Cargando…

Correlating Glycoforms of DC‐SIGN with Stability Using a Combination of Enzymatic Digestion and Ion Mobility Mass Spectrometry

The immune scavenger protein DC‐SIGN interacts with glycosylated proteins and has a putative role in facilitating viral infection. How these recognition events take place with different viruses is not clear and the effects of glycosylation on the folding and stability of DC‐SIGN have not been report...

Descripción completa

Detalles Bibliográficos
Autores principales: Yen, Hsin‐Yung, Liko, Idlir, Gault, Joseph, Wu, Di, Struwe, Weston B., Robinson, Carol V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496578/
https://www.ncbi.nlm.nih.gov/pubmed/33462887
http://dx.doi.org/10.1002/anie.202005727
Descripción
Sumario:The immune scavenger protein DC‐SIGN interacts with glycosylated proteins and has a putative role in facilitating viral infection. How these recognition events take place with different viruses is not clear and the effects of glycosylation on the folding and stability of DC‐SIGN have not been reported. Herein, we report the development and application of a mass‐spectrometry‐based approach to both uncover and characterise the effects of O‐glycans on the stability of DC‐SIGN. We first quantify the Core 1 and 2 O‐glycan structures on the carbohydrate recognition and extracellular domains of the protein using sequential exoglycosidase sequencing. Using ion mobility mass spectrometry, we show how specific O‐glycans, and/or single monosaccharide substitutions, alter both the overall collision cross section and the gas‐phase stability of the DC‐SIGN isoforms. We find that rather than the mass or length of glycoprotein modifications, the stability of DC‐SIGN is better correlated with the number of glycosylation sites.