Cargando…

Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles

Light‐driven ATP regeneration systems combining ATP synthase and bacteriorhodopsin have been proposed as an energy supply in the field of synthetic biology. Energy is required to power biochemical reactions within artificially created reaction compartments like protocells, which are typically based...

Descripción completa

Detalles Bibliográficos
Autores principales: Kleineberg, Christin, Wölfer, Christian, Abbasnia, Amirhossein, Pischel, Dennis, Bednarz, Claudia, Ivanov, Ivan, Heitkamp, Thomas, Börsch, Michael, Sundmacher, Kai, Vidaković‐Koch, Tanja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496644/
https://www.ncbi.nlm.nih.gov/pubmed/32187828
http://dx.doi.org/10.1002/cbic.201900774
_version_ 1783583143440154624
author Kleineberg, Christin
Wölfer, Christian
Abbasnia, Amirhossein
Pischel, Dennis
Bednarz, Claudia
Ivanov, Ivan
Heitkamp, Thomas
Börsch, Michael
Sundmacher, Kai
Vidaković‐Koch, Tanja
author_facet Kleineberg, Christin
Wölfer, Christian
Abbasnia, Amirhossein
Pischel, Dennis
Bednarz, Claudia
Ivanov, Ivan
Heitkamp, Thomas
Börsch, Michael
Sundmacher, Kai
Vidaković‐Koch, Tanja
author_sort Kleineberg, Christin
collection PubMed
description Light‐driven ATP regeneration systems combining ATP synthase and bacteriorhodopsin have been proposed as an energy supply in the field of synthetic biology. Energy is required to power biochemical reactions within artificially created reaction compartments like protocells, which are typically based on either lipid or polymer membranes. The insertion of membrane proteins into different hybrid membranes is delicate, and studies comparing these systems with liposomes are needed. Here we present a detailed study of membrane protein functionality in different hybrid compartments made of graft polymer PDMS‐g‐PEO and diblock copolymer PBd‐PEO. Activity of more than 90 % in lipid/polymer‐based hybrid vesicles could prove an excellent biocompatibility. A significant enhancement of long‐term stability (80 % remaining activity after 42 days) could be demonstrated in polymer/polymer‐based hybrids.
format Online
Article
Text
id pubmed-7496644
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-74966442020-09-25 Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles Kleineberg, Christin Wölfer, Christian Abbasnia, Amirhossein Pischel, Dennis Bednarz, Claudia Ivanov, Ivan Heitkamp, Thomas Börsch, Michael Sundmacher, Kai Vidaković‐Koch, Tanja Chembiochem Full Papers Light‐driven ATP regeneration systems combining ATP synthase and bacteriorhodopsin have been proposed as an energy supply in the field of synthetic biology. Energy is required to power biochemical reactions within artificially created reaction compartments like protocells, which are typically based on either lipid or polymer membranes. The insertion of membrane proteins into different hybrid membranes is delicate, and studies comparing these systems with liposomes are needed. Here we present a detailed study of membrane protein functionality in different hybrid compartments made of graft polymer PDMS‐g‐PEO and diblock copolymer PBd‐PEO. Activity of more than 90 % in lipid/polymer‐based hybrid vesicles could prove an excellent biocompatibility. A significant enhancement of long‐term stability (80 % remaining activity after 42 days) could be demonstrated in polymer/polymer‐based hybrids. John Wiley and Sons Inc. 2020-04-07 2020-08-03 /pmc/articles/PMC7496644/ /pubmed/32187828 http://dx.doi.org/10.1002/cbic.201900774 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Kleineberg, Christin
Wölfer, Christian
Abbasnia, Amirhossein
Pischel, Dennis
Bednarz, Claudia
Ivanov, Ivan
Heitkamp, Thomas
Börsch, Michael
Sundmacher, Kai
Vidaković‐Koch, Tanja
Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles
title Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles
title_full Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles
title_fullStr Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles
title_full_unstemmed Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles
title_short Light‐Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles
title_sort light‐driven atp regeneration in diblock/grafted hybrid vesicles
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496644/
https://www.ncbi.nlm.nih.gov/pubmed/32187828
http://dx.doi.org/10.1002/cbic.201900774
work_keys_str_mv AT kleinebergchristin lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT wolferchristian lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT abbasniaamirhossein lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT pischeldennis lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT bednarzclaudia lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT ivanovivan lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT heitkampthomas lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT borschmichael lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT sundmacherkai lightdrivenatpregenerationindiblockgraftedhybridvesicles
AT vidakovickochtanja lightdrivenatpregenerationindiblockgraftedhybridvesicles