Cargando…
Exploring Variation Between Artificial Grammar Learning Experiments: Outlining a Meta‐Analysis Approach
Artificial grammar learning (AGL) has become an important tool used to understand aspects of human language learning and whether the abilities underlying learning may be unique to humans or found in other species. Successful learning is typically assumed when human or animal participants are able to...
Autores principales: | Trotter, Antony S., Monaghan, Padraic, Beckers, Gabriël J. L., Christiansen, Morten H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496870/ https://www.ncbi.nlm.nih.gov/pubmed/31495072 http://dx.doi.org/10.1111/tops.12454 |
Ejemplares similares
-
An Entropy Model for Artificial Grammar Learning
por: Pothos, Emmanuel M.
Publicado: (2010) -
Under What Conditions Can Recursion Be Learned? Effects of Starting Small in Artificial Grammar Learning of Center‐Embedded Structure
por: Poletiek, Fenna H., et al.
Publicado: (2018) -
Mark My Words: High Frequency Marker Words Impact Early Stages of Language Learning
por: Frost, Rebecca L. A., et al.
Publicado: (2019) -
Structural selection in implicit learning of artificial grammars
por: van den Bos, Esther, et al.
Publicado: (2009) -
Metrical Presentation Boosts Implicit Learning of Artificial Grammar
por: Selchenkova, Tatiana, et al.
Publicado: (2014)