Cargando…

Structure‐Activity Relationship of Phenylpyrazolones against Trypanosoma cruzi

Chagas disease is a neglected parasitic disease caused by the parasitic protozoan Trypanosoma cruzi and currently affects around 8 million people. Previously, 2‐isopropyl‐5‐(4‐methoxy‐3‐(pyridin‐3‐yl)phenyl)‐4,4‐dimethyl‐2,4‐dihydro‐3H‐pyrazol‐3‐one (NPD‐0227) was discovered to be a sub‐micromolar i...

Descripción completa

Detalles Bibliográficos
Autores principales: Sijm, Maarten, Sterk, Geert Jan, Caljon, Guy, Maes, Louis, de Esch, Iwan J. P., Leurs, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496920/
https://www.ncbi.nlm.nih.gov/pubmed/32249532
http://dx.doi.org/10.1002/cmdc.202000136
Descripción
Sumario:Chagas disease is a neglected parasitic disease caused by the parasitic protozoan Trypanosoma cruzi and currently affects around 8 million people. Previously, 2‐isopropyl‐5‐(4‐methoxy‐3‐(pyridin‐3‐yl)phenyl)‐4,4‐dimethyl‐2,4‐dihydro‐3H‐pyrazol‐3‐one (NPD‐0227) was discovered to be a sub‐micromolar inhibitor (pIC(50)=6.4) of T. cruzi. So far, SAR investigations of this scaffold have focused on the alkoxy substituent, the pyrazolone nitrogen substituent and the aromatic substituent of the core phenylpyrazolone. In this study, modifications of the phenyldihydropyrazolone scaffold are described. Variations were introduced by installing different substituents on the phenyl core, modifying the geminal dimethyl and installing various bio‐isosteres of the dihydropyrazolone group. The anti T. cruzi activity of NPD‐0227 could not be surpassed as the most potent compounds show pIC(50) values of around 6.3. However, valuable additional SAR data for this interesting scaffold was obtained, and the data suggest that a scaffold hop is feasible as the pyrazolone moiety can be replaced by a oxazole or oxadiazole with minimal loss of activity.