Cargando…

Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation

Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)‐bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Bilo, Malina, Münzner, Maximilian, Küster, Christian, Enke, Dirk, Lee, Young Joo, Fröba, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497150/
https://www.ncbi.nlm.nih.gov/pubmed/32196769
http://dx.doi.org/10.1002/chem.202000512
_version_ 1783583253391736832
author Bilo, Malina
Münzner, Maximilian
Küster, Christian
Enke, Dirk
Lee, Young Joo
Fröba, Michael
author_facet Bilo, Malina
Münzner, Maximilian
Küster, Christian
Enke, Dirk
Lee, Young Joo
Fröba, Michael
author_sort Bilo, Malina
collection PubMed
description Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)‐bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the macropores of the CPG is impregnated with organosilica phase, forming hybrid system. By subsequent pseudomorphic transformation, an ordered mesopore phase is generated while maintaining the granular shape and macroporosity of the CPG. Surface areas and mesopore sizes in the hierarchical structure are tunable by the choice of the surfactant and transformation time. Two‐dimensional magic angle spinning (MAS) NMR spectroscopy demonstrated that micellar‐templating affects both organosilica and silica phases and pseudomorphic transformation induces phase transition. A double‐layer structure of separate organosilica and silica layers is established for the impregnated material, while a single monophase consisting of randomly distributed T and Q silicon species at the molecular level is identified for the pseudomorphic transformed materials.
format Online
Article
Text
id pubmed-7497150
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-74971502020-09-25 Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation Bilo, Malina Münzner, Maximilian Küster, Christian Enke, Dirk Lee, Young Joo Fröba, Michael Chemistry Full Papers Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)‐bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the macropores of the CPG is impregnated with organosilica phase, forming hybrid system. By subsequent pseudomorphic transformation, an ordered mesopore phase is generated while maintaining the granular shape and macroporosity of the CPG. Surface areas and mesopore sizes in the hierarchical structure are tunable by the choice of the surfactant and transformation time. Two‐dimensional magic angle spinning (MAS) NMR spectroscopy demonstrated that micellar‐templating affects both organosilica and silica phases and pseudomorphic transformation induces phase transition. A double‐layer structure of separate organosilica and silica layers is established for the impregnated material, while a single monophase consisting of randomly distributed T and Q silicon species at the molecular level is identified for the pseudomorphic transformed materials. John Wiley and Sons Inc. 2020-06-11 2020-09-01 /pmc/articles/PMC7497150/ /pubmed/32196769 http://dx.doi.org/10.1002/chem.202000512 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Bilo, Malina
Münzner, Maximilian
Küster, Christian
Enke, Dirk
Lee, Young Joo
Fröba, Michael
Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation
title Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation
title_full Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation
title_fullStr Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation
title_full_unstemmed Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation
title_short Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation
title_sort structural changes of hierarchically nanoporous organosilica/silica hybrid materials by pseudomorphic transformation
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497150/
https://www.ncbi.nlm.nih.gov/pubmed/32196769
http://dx.doi.org/10.1002/chem.202000512
work_keys_str_mv AT bilomalina structuralchangesofhierarchicallynanoporousorganosilicasilicahybridmaterialsbypseudomorphictransformation
AT munznermaximilian structuralchangesofhierarchicallynanoporousorganosilicasilicahybridmaterialsbypseudomorphictransformation
AT kusterchristian structuralchangesofhierarchicallynanoporousorganosilicasilicahybridmaterialsbypseudomorphictransformation
AT enkedirk structuralchangesofhierarchicallynanoporousorganosilicasilicahybridmaterialsbypseudomorphictransformation
AT leeyoungjoo structuralchangesofhierarchicallynanoporousorganosilicasilicahybridmaterialsbypseudomorphictransformation
AT frobamichael structuralchangesofhierarchicallynanoporousorganosilicasilicahybridmaterialsbypseudomorphictransformation