Cargando…
Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling
Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought condit...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497244/ https://www.ncbi.nlm.nih.gov/pubmed/32239564 http://dx.doi.org/10.1111/tpj.14756 |
_version_ | 1783583274743889920 |
---|---|
author | Katsuta, Shohei Masuda, Goro Bak, Hyeokjin Shinozawa, Akihisa Kamiyama, Yoshiaki Umezawa, Taishi Takezawa, Daisuke Yotsui, Izumi Taji, Teruaki Sakata, Yoichi |
author_facet | Katsuta, Shohei Masuda, Goro Bak, Hyeokjin Shinozawa, Akihisa Kamiyama, Yoshiaki Umezawa, Taishi Takezawa, Daisuke Yotsui, Izumi Taji, Teruaki Sakata, Yoichi |
author_sort | Katsuta, Shohei |
collection | PubMed |
description | Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought. |
format | Online Article Text |
id | pubmed-7497244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74972442020-09-25 Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling Katsuta, Shohei Masuda, Goro Bak, Hyeokjin Shinozawa, Akihisa Kamiyama, Yoshiaki Umezawa, Taishi Takezawa, Daisuke Yotsui, Izumi Taji, Teruaki Sakata, Yoichi Plant J Original Articles Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought. John Wiley and Sons Inc. 2020-04-18 2020-07 /pmc/articles/PMC7497244/ /pubmed/32239564 http://dx.doi.org/10.1111/tpj.14756 Text en © 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Katsuta, Shohei Masuda, Goro Bak, Hyeokjin Shinozawa, Akihisa Kamiyama, Yoshiaki Umezawa, Taishi Takezawa, Daisuke Yotsui, Izumi Taji, Teruaki Sakata, Yoichi Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling |
title | Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling |
title_full | Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling |
title_fullStr | Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling |
title_full_unstemmed | Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling |
title_short | Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling |
title_sort | arabidopsis raf‐like kinases act as positive regulators of subclass iii snrk2 in osmostress signaling |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497244/ https://www.ncbi.nlm.nih.gov/pubmed/32239564 http://dx.doi.org/10.1111/tpj.14756 |
work_keys_str_mv | AT katsutashohei arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT masudagoro arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT bakhyeokjin arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT shinozawaakihisa arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT kamiyamayoshiaki arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT umezawataishi arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT takezawadaisuke arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT yotsuiizumi arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT tajiteruaki arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling AT sakatayoichi arabidopsisraflikekinasesactaspositiveregulatorsofsubclassiiisnrk2inosmostresssignaling |