Cargando…
Temporal covariance structure of multi-spectral phenotypes and their predictive ability for end-of-season traits in maize
KEY MESSAGE: Heritable variation in phenotypes extracted from multi-spectral images (MSIs) and strong genetic correlations with end-of-season traits indicates the value of MSIs for crop improvement and modeling of plant growth curve. ABSTRACT: Vegetation indices (VIs) derived from multi-spectral ima...
Autores principales: | Anche, Mahlet T., Kaczmar, Nicholas S., Morales, Nicolas, Clohessy, James W., Ilut, Daniel C., Gore, Michael A., Robbins, Kelly R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497340/ https://www.ncbi.nlm.nih.gov/pubmed/32613265 http://dx.doi.org/10.1007/s00122-020-03637-6 |
Ejemplares similares
-
Genomic Prediction Strategies for Dry-Down-Related Traits in Maize
por: Ni, Pengzun, et al.
Publicado: (2022) -
Genomic Prediction Using Multi-trait Weighted GBLUP Accounting for Heterogeneous Variances and Covariances Across the Genome
por: Karaman, Emre, et al.
Publicado: (2018) -
Covariate-assisted spectral clustering
por: Binkiewicz, N., et al.
Publicado: (2017) -
Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings
por: Galic, Vlatko, et al.
Publicado: (2020) -
Personality traits covary with individual differences in inhibitory abilities in 2 species of fish
por: Lucon-Xiccato, Tyrone, et al.
Publicado: (2020)