Cargando…
A Genetic Attack Against Machine Learning Classifiers to Steal Biometric Actigraphy Profiles from Health Related Sensor Data
In this work, we propose the use of a genetic-algorithm-based attack against machine learning classifiers with the aim of ‘stealing’ users’ biometric actigraphy profiles from health related sensor data. The target classification model uses daily actigraphy patterns for user identification. The biome...
Autores principales: | Garcia-Ceja, Enrique, Morin, Brice, Aguilar-Rivera, Anton, Riegler, Michael Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497442/ https://www.ncbi.nlm.nih.gov/pubmed/32929615 http://dx.doi.org/10.1007/s10916-020-01646-y |
Ejemplares similares
-
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study
por: Brinati, Davide, et al.
Publicado: (2020) -
A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
por: Haleem, Muhammad Salman, et al.
Publicado: (2017) -
Medical Image Retrieval Using Vector Quantization and Fuzzy S-tree
por: Nowaková, Jana, et al.
Publicado: (2016) -
The Relative Contribution of High-Gamma Linguistic Processing Stages of Word Production, and Motor Imagery of Articulation in Class Separability of Covert Speech Tasks in EEG Data
por: Jahangiri, Amir, et al.
Publicado: (2018) -
EGG DWPack: System for Multi-Channel Electrogastrographic Signals Recording and Analysis
por: Komorowski, Dariusz
Publicado: (2018)