Cargando…
Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue
PURPOSE: Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. PROCEDURES: In this study, w...
Autores principales: | Li, Dan, Hui, Hui, Zhang, Yingqian, Tong, Wei, Tian, Feng, Yang, Xin, Liu, Jie, Chen, Yundai, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497459/ https://www.ncbi.nlm.nih.gov/pubmed/32514884 http://dx.doi.org/10.1007/s11307-020-01508-6 |
Ejemplares similares
-
Optical sectioning of unlabeled samples using bright-field microscopy
por: Gutiérrez-Medina, Braulio
Publicado: (2022) -
The effect of endothelial progenitor cell transplantation on neointimal hyperplasia and reendothelialisation after balloon catheter injury in rat carotid arteries
por: Wang, Wei, et al.
Publicado: (2021) -
Deep learning-enabled virtual histological staining of biological samples
por: Bai, Bijie, et al.
Publicado: (2023) -
DNA Comet Giemsa Staining for Conventional Bright-Field Microscopy
por: Osipov, Andreyan, et al.
Publicado: (2014) -
Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles
por: Tong, Wei, et al.
Publicado: (2021)