Cargando…
Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy
Background: Panax notoginseng, a Chinese herbal medicine, has been widely used to treat vascular diseases. Diabetic retinopathy (DR) is one of the complications of diabetic microangiopathy. According to recent studies, the application of Panax notoginseng extract and related Chinese patent medicine...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497535/ https://www.ncbi.nlm.nih.gov/pubmed/32133960 http://dx.doi.org/10.2174/1386207323666200305093709 |
_version_ | 1783583337869213696 |
---|---|
author | Piao, Chunli Sun, Zheyu Jin, De Wang, Han Wu, Xuemin Zhang, Naiwen Lian, Fengmei Tong, Xiaolin |
author_facet | Piao, Chunli Sun, Zheyu Jin, De Wang, Han Wu, Xuemin Zhang, Naiwen Lian, Fengmei Tong, Xiaolin |
author_sort | Piao, Chunli |
collection | PubMed |
description | Background: Panax notoginseng, a Chinese herbal medicine, has been widely used to treat vascular diseases. Diabetic retinopathy (DR) is one of the complications of diabetic microangiopathy. According to recent studies, the application of Panax notoginseng extract and related Chinese patent medicine preparations can significantly improve DR. However, the pharmacological mechanisms remain unclear. Therefore, the purpose of this study was to decipher the potential mechanism of Panax notoginseng treatment of DR using network pharmacology. Method: We evaluated and screened the active compounds of Panax notoginseng using the Traditional Chinese Medicine Systems Pharmacology database and collected potential targets of the compounds by target fishing. A multi-source database was also used to organize targets of DR. The potential targets as the treatment of DR with Panax notoginseng were then obtained by matching the compound targets with the DR targets. Using protein-protein interaction networks and topological analysis, interactions between potential targets were identified. In addition, we also performed gene ontology-biological process and pathway enrichment analysis for the potential targets by using the Biological Information Annotation Database. Results: Eight active ingredients of Panax notoginseng and 31 potential targets for the treatment of DR were identified. The screening and enrichment analysis revealed that the treatment of DR using Panax notoginseng primarily involved 28 biological processes and 10 related pathways. Further analyses indicated that angiogenesis, inflammatory reactions, and apoptosis may be the main processes involved in the treatment of DR with Panax notoginseng. In addition, we determined that the mechanism of intervention of Panax notoginseng in treating DR may involve five core targets, VEGFA, MMP-9, MMP-2, FGF2, and COX-2. Conclusion: Panax notoginseng may treat diabetic retinopathy through the mechanism of network pharmacological analysis. The underlying molecular mechanisms were closely related to the intervention of angiogenesis, inflammation, and apoptosis with VEGFA, MMP-9, MMP-2, FGF2, and COX-2 being possible targets. |
format | Online Article Text |
id | pubmed-7497535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Bentham Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-74975352020-10-05 Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy Piao, Chunli Sun, Zheyu Jin, De Wang, Han Wu, Xuemin Zhang, Naiwen Lian, Fengmei Tong, Xiaolin Comb Chem High Throughput Screen Combinatorial Chemistry & High Throughput Screening Background: Panax notoginseng, a Chinese herbal medicine, has been widely used to treat vascular diseases. Diabetic retinopathy (DR) is one of the complications of diabetic microangiopathy. According to recent studies, the application of Panax notoginseng extract and related Chinese patent medicine preparations can significantly improve DR. However, the pharmacological mechanisms remain unclear. Therefore, the purpose of this study was to decipher the potential mechanism of Panax notoginseng treatment of DR using network pharmacology. Method: We evaluated and screened the active compounds of Panax notoginseng using the Traditional Chinese Medicine Systems Pharmacology database and collected potential targets of the compounds by target fishing. A multi-source database was also used to organize targets of DR. The potential targets as the treatment of DR with Panax notoginseng were then obtained by matching the compound targets with the DR targets. Using protein-protein interaction networks and topological analysis, interactions between potential targets were identified. In addition, we also performed gene ontology-biological process and pathway enrichment analysis for the potential targets by using the Biological Information Annotation Database. Results: Eight active ingredients of Panax notoginseng and 31 potential targets for the treatment of DR were identified. The screening and enrichment analysis revealed that the treatment of DR using Panax notoginseng primarily involved 28 biological processes and 10 related pathways. Further analyses indicated that angiogenesis, inflammatory reactions, and apoptosis may be the main processes involved in the treatment of DR with Panax notoginseng. In addition, we determined that the mechanism of intervention of Panax notoginseng in treating DR may involve five core targets, VEGFA, MMP-9, MMP-2, FGF2, and COX-2. Conclusion: Panax notoginseng may treat diabetic retinopathy through the mechanism of network pharmacological analysis. The underlying molecular mechanisms were closely related to the intervention of angiogenesis, inflammation, and apoptosis with VEGFA, MMP-9, MMP-2, FGF2, and COX-2 being possible targets. Bentham Science Publishers 2020-04 2020-04 /pmc/articles/PMC7497535/ /pubmed/32133960 http://dx.doi.org/10.2174/1386207323666200305093709 Text en © 2020 Bentham Science Publishers https://creativecommons.org/licenses/by-nc/4.0/legalcode This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
spellingShingle | Combinatorial Chemistry & High Throughput Screening Piao, Chunli Sun, Zheyu Jin, De Wang, Han Wu, Xuemin Zhang, Naiwen Lian, Fengmei Tong, Xiaolin Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy |
title | Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy |
title_full | Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy |
title_fullStr | Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy |
title_full_unstemmed | Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy |
title_short | Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy |
title_sort | network pharmacology-based investigation of the underlying mechanism of panax notoginseng treatment of diabetic retinopathy |
topic | Combinatorial Chemistry & High Throughput Screening |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497535/ https://www.ncbi.nlm.nih.gov/pubmed/32133960 http://dx.doi.org/10.2174/1386207323666200305093709 |
work_keys_str_mv | AT piaochunli networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy AT sunzheyu networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy AT jinde networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy AT wanghan networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy AT wuxuemin networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy AT zhangnaiwen networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy AT lianfengmei networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy AT tongxiaolin networkpharmacologybasedinvestigationoftheunderlyingmechanismofpanaxnotoginsengtreatmentofdiabeticretinopathy |