Cargando…

Artificial Double-Helix for Geometrical Control of Magnetic Chirality

[Image: see text] Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling mag...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanz-Hernández, Dédalo, Hierro-Rodriguez, Aurelio, Donnelly, Claire, Pablo-Navarro, Javier, Sorrentino, Andrea, Pereiro, Eva, Magén, César, McVitie, Stephen, de Teresa, José María, Ferrer, Salvador, Fischer, Peter, Fernández-Pacheco, Amalio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497658/
https://www.ncbi.nlm.nih.gov/pubmed/32633492
http://dx.doi.org/10.1021/acsnano.0c00720
_version_ 1783583361862729728
author Sanz-Hernández, Dédalo
Hierro-Rodriguez, Aurelio
Donnelly, Claire
Pablo-Navarro, Javier
Sorrentino, Andrea
Pereiro, Eva
Magén, César
McVitie, Stephen
de Teresa, José María
Ferrer, Salvador
Fischer, Peter
Fernández-Pacheco, Amalio
author_facet Sanz-Hernández, Dédalo
Hierro-Rodriguez, Aurelio
Donnelly, Claire
Pablo-Navarro, Javier
Sorrentino, Andrea
Pereiro, Eva
Magén, César
McVitie, Stephen
de Teresa, José María
Ferrer, Salvador
Fischer, Peter
Fernández-Pacheco, Amalio
author_sort Sanz-Hernández, Dédalo
collection PubMed
description [Image: see text] Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.
format Online
Article
Text
id pubmed-7497658
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-74976582020-09-18 Artificial Double-Helix for Geometrical Control of Magnetic Chirality Sanz-Hernández, Dédalo Hierro-Rodriguez, Aurelio Donnelly, Claire Pablo-Navarro, Javier Sorrentino, Andrea Pereiro, Eva Magén, César McVitie, Stephen de Teresa, José María Ferrer, Salvador Fischer, Peter Fernández-Pacheco, Amalio ACS Nano [Image: see text] Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality. American Chemical Society 2020-07-07 2020-07-28 /pmc/articles/PMC7497658/ /pubmed/32633492 http://dx.doi.org/10.1021/acsnano.0c00720 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Sanz-Hernández, Dédalo
Hierro-Rodriguez, Aurelio
Donnelly, Claire
Pablo-Navarro, Javier
Sorrentino, Andrea
Pereiro, Eva
Magén, César
McVitie, Stephen
de Teresa, José María
Ferrer, Salvador
Fischer, Peter
Fernández-Pacheco, Amalio
Artificial Double-Helix for Geometrical Control of Magnetic Chirality
title Artificial Double-Helix for Geometrical Control of Magnetic Chirality
title_full Artificial Double-Helix for Geometrical Control of Magnetic Chirality
title_fullStr Artificial Double-Helix for Geometrical Control of Magnetic Chirality
title_full_unstemmed Artificial Double-Helix for Geometrical Control of Magnetic Chirality
title_short Artificial Double-Helix for Geometrical Control of Magnetic Chirality
title_sort artificial double-helix for geometrical control of magnetic chirality
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497658/
https://www.ncbi.nlm.nih.gov/pubmed/32633492
http://dx.doi.org/10.1021/acsnano.0c00720
work_keys_str_mv AT sanzhernandezdedalo artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT hierrorodriguezaurelio artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT donnellyclaire artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT pablonavarrojavier artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT sorrentinoandrea artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT pereiroeva artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT magencesar artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT mcvitiestephen artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT deteresajosemaria artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT ferrersalvador artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT fischerpeter artificialdoublehelixforgeometricalcontrolofmagneticchirality
AT fernandezpachecoamalio artificialdoublehelixforgeometricalcontrolofmagneticchirality