Cargando…
Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia
Automated computational analysis techniques utilizing machine learning have been demonstrated to be able to extract more data from different imaging modalities compared to traditional analysis techniques. One new approach is to use machine learning techniques to existing multiphoton imaging modaliti...
Autores principales: | Sagar, Md Abdul Kader, Cheng, Kevin P., Ouellette, Jonathan N., Williams, Justin C., Watters, Jyoti J., Eliceiri, Kevin W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497798/ https://www.ncbi.nlm.nih.gov/pubmed/33013309 http://dx.doi.org/10.3389/fnins.2020.00931 |
Ejemplares similares
-
Microglia activation visualization via fluorescence lifetime imaging microscopy of intrinsically fluorescent metabolic cofactors
por: Sagar, Md. Abdul K., et al.
Publicado: (2020) -
A deep learning framework for classifying microglia activation state using morphology and intrinsic fluorescence lifetime data
por: Mukherjee, Lopamudra, et al.
Publicado: (2022) -
Label-free assessment of pre-implantation embryo quality by the Fluorescence Lifetime Imaging Microscopy (FLIM)-phasor approach
por: Ma, Ning, et al.
Publicado: (2019) -
Optical fiber-based dispersion for spectral discrimination in fluorescence lifetime imaging systems
por: Sagar, Md Abdul Kader, et al.
Publicado: (2019) -
In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging
por: Szulczewski, Joseph M., et al.
Publicado: (2016)