Cargando…
Accelerating Spatial Cross-Matching on CPU-GPU Hybrid Platform With CUDA and OpenACC
Spatial cross-matching operation over geospatial polygonal datasets is a highly compute-intensive yet an essential task to a wide array of real-world applications. At the same time, modern computing systems are typically equipped with multiple processing units capable of task parallelization and opt...
Autores principales: | Baig, Furqan, Gao, Chao, Teng, Dejun, Kong, Jun, Wang, Fusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497850/ https://www.ncbi.nlm.nih.gov/pubmed/32954255 http://dx.doi.org/10.3389/fdata.2020.00014 |
Ejemplares similares
-
Parallel programming with OpenACC
por: Farber, Rob
Publicado: (2015) -
OpenACC for programmers: concepts and strategies
por: Chandrasekaran, Sunita, et al.
Publicado: (2018) -
GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
por: Wang, Michael, et al.
Publicado: (2021) -
CAPS OpenACC Compilers: Performance and Portability
por: Bihan, Stéphane
Publicado: (2013) -
Accelerating prediction of chemical shift of protein structures on GPUs: Using OpenACC
por: Wright, Eric, et al.
Publicado: (2020)