Cargando…
Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration
Magnetic resonance imaging (MRI) can indirectly reflect microscopic changes in lesions on the spinal cord; however, the application of deep learning to MRI to classify and detect lesions for cervical spinal cord diseases has not been sufficiently explored. In this study, we implemented a deep neural...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497907/ https://www.ncbi.nlm.nih.gov/pubmed/32797664 http://dx.doi.org/10.1002/acm2.13001 |
_version_ | 1783583404135022592 |
---|---|
author | Ma, Shaolong Huang, Yang Che, Xiangjiu Gu, Rui |
author_facet | Ma, Shaolong Huang, Yang Che, Xiangjiu Gu, Rui |
author_sort | Ma, Shaolong |
collection | PubMed |
description | Magnetic resonance imaging (MRI) can indirectly reflect microscopic changes in lesions on the spinal cord; however, the application of deep learning to MRI to classify and detect lesions for cervical spinal cord diseases has not been sufficiently explored. In this study, we implemented a deep neural network for MRI to detect lesions caused by cervical diseases. We retrospectively reviewed the MRI of 1,500 patients irrespective of whether they had cervical diseases. The patients were treated in our hospital from January 2013 to December 2018. We randomly divided the MRI data into three groups of datasets: disc group (800 datasets), injured group (200 datasets), and normal group (500 datasets). We designed the relevant parameters and used a faster‐region convolutional neural network (Faster R‐CNN) combined with a backbone convolutional feature extractor using the ResNet‐50 and VGG‐16 networks, to detect lesions during MRI. Experimental results showed that the prediction accuracy and speed of Faster R‐CNN with ResNet‐50 and VGG‐16 in detecting and recognizing lesions from a cervical spinal cord MRI were satisfactory. The mean average precisions (mAPs) for Faster R‐CNN with ResNet‐50 and VGG‐16 were 88.6 and 72.3%, respectively, and the testing times was 0.22 and 0.24 s/image, respectively. Faster R‐CNN can identify and detect lesions from cervical MRIs. To some extent, it may aid radiologists and spine surgeons in their diagnoses. The results of our study can provide motivation for future research to combine medical imaging and deep learning. |
format | Online Article Text |
id | pubmed-7497907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74979072020-09-25 Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration Ma, Shaolong Huang, Yang Che, Xiangjiu Gu, Rui J Appl Clin Med Phys Medical Imaging Magnetic resonance imaging (MRI) can indirectly reflect microscopic changes in lesions on the spinal cord; however, the application of deep learning to MRI to classify and detect lesions for cervical spinal cord diseases has not been sufficiently explored. In this study, we implemented a deep neural network for MRI to detect lesions caused by cervical diseases. We retrospectively reviewed the MRI of 1,500 patients irrespective of whether they had cervical diseases. The patients were treated in our hospital from January 2013 to December 2018. We randomly divided the MRI data into three groups of datasets: disc group (800 datasets), injured group (200 datasets), and normal group (500 datasets). We designed the relevant parameters and used a faster‐region convolutional neural network (Faster R‐CNN) combined with a backbone convolutional feature extractor using the ResNet‐50 and VGG‐16 networks, to detect lesions during MRI. Experimental results showed that the prediction accuracy and speed of Faster R‐CNN with ResNet‐50 and VGG‐16 in detecting and recognizing lesions from a cervical spinal cord MRI were satisfactory. The mean average precisions (mAPs) for Faster R‐CNN with ResNet‐50 and VGG‐16 were 88.6 and 72.3%, respectively, and the testing times was 0.22 and 0.24 s/image, respectively. Faster R‐CNN can identify and detect lesions from cervical MRIs. To some extent, it may aid radiologists and spine surgeons in their diagnoses. The results of our study can provide motivation for future research to combine medical imaging and deep learning. John Wiley and Sons Inc. 2020-08-14 /pmc/articles/PMC7497907/ /pubmed/32797664 http://dx.doi.org/10.1002/acm2.13001 Text en © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Medical Imaging Ma, Shaolong Huang, Yang Che, Xiangjiu Gu, Rui Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration |
title | Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration |
title_full | Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration |
title_fullStr | Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration |
title_full_unstemmed | Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration |
title_short | Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration |
title_sort | faster rcnn‐based detection of cervical spinal cord injury and disc degeneration |
topic | Medical Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497907/ https://www.ncbi.nlm.nih.gov/pubmed/32797664 http://dx.doi.org/10.1002/acm2.13001 |
work_keys_str_mv | AT mashaolong fasterrcnnbaseddetectionofcervicalspinalcordinjuryanddiscdegeneration AT huangyang fasterrcnnbaseddetectionofcervicalspinalcordinjuryanddiscdegeneration AT chexiangjiu fasterrcnnbaseddetectionofcervicalspinalcordinjuryanddiscdegeneration AT gurui fasterrcnnbaseddetectionofcervicalspinalcordinjuryanddiscdegeneration |