Cargando…
Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation
We aimed to estimate the risk of secondary cancer after radiotherapy (RT) in high‐risk prostate cancer (HRPC) patients with pelvic irradiation. Computed tomography data of five biopsy‐proven HRPC patients were selected for this study. Two different planning target volumes (PTV(1) and PTV(2)) were co...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497909/ https://www.ncbi.nlm.nih.gov/pubmed/32671989 http://dx.doi.org/10.1002/acm2.12972 |
_version_ | 1783583404595347456 |
---|---|
author | Haciislamoglu, Emel Gungor, Gorkem Aydin, Gokhan Canyilmaz, Emine Guler, Ozan Cem Zengin, Ahmet Yasar Yenice, Kamil Mehmet |
author_facet | Haciislamoglu, Emel Gungor, Gorkem Aydin, Gokhan Canyilmaz, Emine Guler, Ozan Cem Zengin, Ahmet Yasar Yenice, Kamil Mehmet |
author_sort | Haciislamoglu, Emel |
collection | PubMed |
description | We aimed to estimate the risk of secondary cancer after radiotherapy (RT) in high‐risk prostate cancer (HRPC) patients with pelvic irradiation. Computed tomography data of five biopsy‐proven HRPC patients were selected for this study. Two different planning target volumes (PTV(1) and PTV(2)) were contoured for each patient. The PTV(1) included the prostate, seminal vesicles, and pelvic lymphatics, while the PTV(2) included only the prostate and seminal vesicles. The prescribed dose was 54 Gy for the PTV(1) with a sequential boost (24 Gy for the PTV(2)). Intensity‐modulated RT (IMRT) and volumetric modulated arc therapy (VMAT) techniques were used to generate treatment plans with 6 and 10 MV photon energies with the flattening filter (FF) or flattening filter‐free (FFF) irradiation mode. The excess absolute risks (EARs) were calculated and compared for the bladder, rectum, pelvic bone, and soft tissue based on the linear‐exponential, plateau, full mechanistic, and specific mechanistic sarcoma dose‐response model. According to the models, all treatment plans resulted in similar risks of secondary bladder or rectal cancer and pelvic bone or soft tissue sarcoma except for the estimated risk of the bladder according to the full mechanistic model using IMRT((6MV;FF)) technique compared with VMAT techniques with FFF options. The overall estimation of EAR indicated that the radiation‐induced cancer risk due to RT in HRPC was lower for bladder than the rectum. EAR values ranged from 1.47 to 5.82 for bladder and 6.36 to 7.94 for rectum, depending on the dose–response models used. The absolute risks of the secondary pelvic bone and soft tissue sarcoma were small for the plans examined. We theoretically predicted the radiation‐induced secondary cancer risk in HRPC patients with pelvic irradiation. Nevertheless, prospective clinical trials, with larger patient cohorts with a long‐term follow‐up, are needed to validate these model predictions. |
format | Online Article Text |
id | pubmed-7497909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74979092020-09-25 Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation Haciislamoglu, Emel Gungor, Gorkem Aydin, Gokhan Canyilmaz, Emine Guler, Ozan Cem Zengin, Ahmet Yasar Yenice, Kamil Mehmet J Appl Clin Med Phys Radiation Oncology Physics We aimed to estimate the risk of secondary cancer after radiotherapy (RT) in high‐risk prostate cancer (HRPC) patients with pelvic irradiation. Computed tomography data of five biopsy‐proven HRPC patients were selected for this study. Two different planning target volumes (PTV(1) and PTV(2)) were contoured for each patient. The PTV(1) included the prostate, seminal vesicles, and pelvic lymphatics, while the PTV(2) included only the prostate and seminal vesicles. The prescribed dose was 54 Gy for the PTV(1) with a sequential boost (24 Gy for the PTV(2)). Intensity‐modulated RT (IMRT) and volumetric modulated arc therapy (VMAT) techniques were used to generate treatment plans with 6 and 10 MV photon energies with the flattening filter (FF) or flattening filter‐free (FFF) irradiation mode. The excess absolute risks (EARs) were calculated and compared for the bladder, rectum, pelvic bone, and soft tissue based on the linear‐exponential, plateau, full mechanistic, and specific mechanistic sarcoma dose‐response model. According to the models, all treatment plans resulted in similar risks of secondary bladder or rectal cancer and pelvic bone or soft tissue sarcoma except for the estimated risk of the bladder according to the full mechanistic model using IMRT((6MV;FF)) technique compared with VMAT techniques with FFF options. The overall estimation of EAR indicated that the radiation‐induced cancer risk due to RT in HRPC was lower for bladder than the rectum. EAR values ranged from 1.47 to 5.82 for bladder and 6.36 to 7.94 for rectum, depending on the dose–response models used. The absolute risks of the secondary pelvic bone and soft tissue sarcoma were small for the plans examined. We theoretically predicted the radiation‐induced secondary cancer risk in HRPC patients with pelvic irradiation. Nevertheless, prospective clinical trials, with larger patient cohorts with a long‐term follow‐up, are needed to validate these model predictions. John Wiley and Sons Inc. 2020-07-16 /pmc/articles/PMC7497909/ /pubmed/32671989 http://dx.doi.org/10.1002/acm2.12972 Text en © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Radiation Oncology Physics Haciislamoglu, Emel Gungor, Gorkem Aydin, Gokhan Canyilmaz, Emine Guler, Ozan Cem Zengin, Ahmet Yasar Yenice, Kamil Mehmet Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation |
title | Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation |
title_full | Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation |
title_fullStr | Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation |
title_full_unstemmed | Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation |
title_short | Estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation |
title_sort | estimation of secondary cancer risk after radiotherapy in high‐risk prostate cancer patients with pelvic irradiation |
topic | Radiation Oncology Physics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497909/ https://www.ncbi.nlm.nih.gov/pubmed/32671989 http://dx.doi.org/10.1002/acm2.12972 |
work_keys_str_mv | AT haciislamogluemel estimationofsecondarycancerriskafterradiotherapyinhighriskprostatecancerpatientswithpelvicirradiation AT gungorgorkem estimationofsecondarycancerriskafterradiotherapyinhighriskprostatecancerpatientswithpelvicirradiation AT aydingokhan estimationofsecondarycancerriskafterradiotherapyinhighriskprostatecancerpatientswithpelvicirradiation AT canyilmazemine estimationofsecondarycancerriskafterradiotherapyinhighriskprostatecancerpatientswithpelvicirradiation AT gulerozancem estimationofsecondarycancerriskafterradiotherapyinhighriskprostatecancerpatientswithpelvicirradiation AT zenginahmetyasar estimationofsecondarycancerriskafterradiotherapyinhighriskprostatecancerpatientswithpelvicirradiation AT yenicekamilmehmet estimationofsecondarycancerriskafterradiotherapyinhighriskprostatecancerpatientswithpelvicirradiation |