Cargando…
End‐to‐end unsupervised cycle‐consistent fully convolutional network for 3D pelvic CT‐MR deformable registration
OBJECTIVE: To improve the efficiency of computed tomography (CT)‐magnetic resonance (MR) deformable image registration while ensuring the registration accuracy. METHODS: Two fully convolutional networks (FCNs) for generating spatial deformable grids were proposed using the Cycle‐Consistent method to...
Autores principales: | Guo, Yi, Wu, Xiangyi, Wang, Zhi, Pei, Xi, Xu, X. George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497923/ https://www.ncbi.nlm.nih.gov/pubmed/32657533 http://dx.doi.org/10.1002/acm2.12968 |
Ejemplares similares
-
Evaluation of whole‐body MR to CT deformable image registration
por: Akbarzadeh, A., et al.
Publicado: (2013) -
Development and evaluation of a novel MR‐compatible pelvic end‐to‐end phantom
por: Cunningham, Justine M., et al.
Publicado: (2018) -
Unsupervised deep learning registration model for multimodal brain images
por: Abbasi, Samaneh, et al.
Publicado: (2023) -
Evaluation of a commercial deformable image registration algorithm for dual‐energy CT processing
por: Huang, Jessie Y., et al.
Publicado: (2020) -
Clinical validation of the normalized mutual information method for registration of CT and MR images in radiotherapy of brain tumors
por: Veninga, Theo, et al.
Publicado: (2004)