Cargando…
Automatic localization and segmentation of focal cortical dysplasia in FLAIR‐negative patients using a convolutional neural network
PURPOSE: Focal cortical dysplasia (FCD) is a common cause of epilepsy; the only treatment is surgery. Therefore, detecting FCD using noninvasive imaging technology can help doctors determine whether surgical intervention is required. Since FCD lesions are small and not obvious, diagnosing FCD throug...
Autores principales: | Feng, Cuixia, Zhao, Hulin, Li, Yueer, Wen, Junhai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497927/ https://www.ncbi.nlm.nih.gov/pubmed/32809276 http://dx.doi.org/10.1002/acm2.12985 |
Ejemplares similares
-
Detecting focal cortical dysplasia lesions from FLAIR-negative images based on cortical thickness
por: Feng, Cuixia, et al.
Publicado: (2020) -
Correction to: Detecting focal cortical dysplasia lesions from FLAIR-negative images based on cortical thickness
por: Feng, Cuixia, et al.
Publicado: (2020) -
Liver tumor segmentation based on 3D convolutional neural network with dual scale
por: Meng, Lu, et al.
Publicado: (2019) -
Integration of spatial information in convolutional neural networks for automatic segmentation of intraoperative transrectal ultrasound images
por: Ghavami, Nooshin, et al.
Publicado: (2018) -
Fully automatic tumor segmentation of breast ultrasound images with deep learning
por: Zhang, Shuai, et al.
Publicado: (2022)