Cargando…
Prediction of hepatitis E using machine learning models
BACKGROUND: Accurate and reliable predictions of infectious disease can be valuable to public health organizations that plan interventions to decrease or prevent disease transmission. A great variety of models have been developed for this task. However, for different data series, the performance of...
Autores principales: | Guo, Yanhui, Feng, Yi, Qu, Fuli, Zhang, Li, Yan, Bingyu, Lv, Jingjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497991/ https://www.ncbi.nlm.nih.gov/pubmed/32941452 http://dx.doi.org/10.1371/journal.pone.0237750 |
Ejemplares similares
-
Deep learning models for hepatitis E incidence prediction leveraging meteorological factors
por: Feng, Yi, et al.
Publicado: (2023) -
Hepatitis E Virus in Yellow Cattle, Shandong, Eastern China
por: Yan, Bingyu, et al.
Publicado: (2016) -
Predicting incidence of hepatitis E using machine learning in Jiangsu Province, China
por: Cheng, Xiaoqing, et al.
Publicado: (2022) -
Comparison of hepatitis E virus seroprevalence between HBsAg-positive population and healthy controls in Shandong province, China
por: Zhang, Li, et al.
Publicado: (2018) -
Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning
por: Wang, Chen, et al.
Publicado: (2021)