Cargando…

A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room

The COVID-19 is a severe respiratory disease caused by a devastating coronavirus family (2019-nCoV) has become a pandemic across the globe. It is an infectious virus and transmits by inhalation or contact with droplet nuclei produced during sneezing, coughing, and speaking by infected people. Airbor...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhattacharyya, Suvanjan, Dey, Kunal, Paul, Akshoy Ranjan, Biswas, Ranjib
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498234/
https://www.ncbi.nlm.nih.gov/pubmed/32963423
http://dx.doi.org/10.1016/j.chaos.2020.110294
Descripción
Sumario:The COVID-19 is a severe respiratory disease caused by a devastating coronavirus family (2019-nCoV) has become a pandemic across the globe. It is an infectious virus and transmits by inhalation or contact with droplet nuclei produced during sneezing, coughing, and speaking by infected people. Airborne transmission of COVID-19 is also possible in a confined place in the immediate environment of the infected person. Present study investigates the effectiveness of conditioned air released from air-conditioning machines to mix with aerosol sanitizer to reach every point of the space of the isolation room so as to kill the COVID-19 virus which will help to protect the lives of doctors, nurses and health care workers. In order to numerically model the laminar-transitional flows, transition SST k-ε model, which involves four transport equations are employed in the current study. It is found from the analysis that high turbulent fields generated inside the isolation room may be an effective way of distributing sanitizer in entire volume of isolation room to kill the COVID-19 virus.