Cargando…
Grad-seq shines light on unrecognized RNA and protein complexes in the model bacterium Escherichia coli
Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498339/ https://www.ncbi.nlm.nih.gov/pubmed/32813020 http://dx.doi.org/10.1093/nar/gkaa676 |
Sumario: | Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species. |
---|