Cargando…

Activation of DNA-PK by hairpinned DNA ends reveals a stepwise mechanism of kinase activation

As its name implies, the DNA dependent protein kinase (DNA-PK) requires DNA double-stranded ends for enzymatic activation. Here, I demonstrate that hairpinned DNA ends are ineffective for activating the kinase toward many of its well-studied substrates (p53, XRCC4, XLF, HSP90). However, hairpinned D...

Descripción completa

Detalles Bibliográficos
Autor principal: Meek, Katheryn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498359/
https://www.ncbi.nlm.nih.gov/pubmed/32716029
http://dx.doi.org/10.1093/nar/gkaa614
Descripción
Sumario:As its name implies, the DNA dependent protein kinase (DNA-PK) requires DNA double-stranded ends for enzymatic activation. Here, I demonstrate that hairpinned DNA ends are ineffective for activating the kinase toward many of its well-studied substrates (p53, XRCC4, XLF, HSP90). However, hairpinned DNA ends robustly stimulate certain DNA-PK autophosphorylations. Specifically, autophosphorylation sites within the ABCDE cluster are robustly phosphorylated when DNA-PK is activated by hairpinned DNA ends. Of note, phosphorylation of the ABCDE sites is requisite for activation of the Artemis nuclease that associates with DNA-PK to mediate hairpin opening. This finding suggests a multi-step mechanism of kinase activation. Finally, I find that all non-homologous end joining (NHEJ) defective cells (whether deficient in components of the DNA-PK complex or components of the ligase complex) are similarly deficient in joining DNA double-stranded breaks (DSBs) with hairpinned termini.