Cargando…
Predicting permeability via statistical learning on higher-order microstructural information
Quantitative structure–property relationships are crucial for the understanding and prediction of the physical properties of complex materials. For fluid flow in porous materials, characterizing the geometry of the pore microstructure facilitates prediction of permeability, a key property that has b...
Autores principales: | Röding, Magnus, Ma, Zheng, Torquato, Salvatore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498464/ https://www.ncbi.nlm.nih.gov/pubmed/32943677 http://dx.doi.org/10.1038/s41598-020-72085-5 |
Ejemplares similares
-
Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper
por: Shen, Zhiqiang, et al.
Publicado: (2017) -
Random heterogeneous materials: microstructure and macroscopic properties
por: Torquato, Salvatore
Publicado: (2002) -
Relevance to the higher order structure may govern auditory statistical learning in neonates
por: Todd, Juanita, et al.
Publicado: (2022) -
A Novel Three-Phase Model of Brain Tissue Microstructure
por: Gevertz, Jana L., et al.
Publicado: (2008) -
Correction: A Novel Three-Phase Model of Brain Tissue Microstructure
por: Gevertz, Jana L., et al.
Publicado: (2009)