Cargando…
Radiomics in radiation oncology—basics, methods, and limitations
Over the past years, the quantity and complexity of imaging data available for the clinical management of patients with solid tumors has increased substantially. Without the support of methods from the field of artificial intelligence (AI) and machine learning, a complete evaluation of the available...
Autores principales: | Lohmann, Philipp, Bousabarah, Khaled, Hoevels, Mauritius, Treuer, Harald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498498/ https://www.ncbi.nlm.nih.gov/pubmed/32647917 http://dx.doi.org/10.1007/s00066-020-01663-3 |
Ejemplares similares
-
Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: results from two independent institutions
por: Bousabarah, Khaled, et al.
Publicado: (2021) -
Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data
por: Bousabarah, Khaled, et al.
Publicado: (2020) -
Outcome and toxicity analysis of single dose stereotactic radiosurgery in vestibular schwannoma based on the Koos grading system
por: Rueß, Daniel, et al.
Publicado: (2020) -
Stereotactic radiosurgery of benign brain tumors in elderly patients: evaluation of outcome and toxicity
por: Rueß, Daniel, et al.
Publicado: (2020) -
Impact of prescription isodose level and collimator selection on dose homogeneity and plan quality in robotic radiosurgery
por: Hellerbach, Alexandra, et al.
Publicado: (2021)