Cargando…
A Systematic Evaluation of Interneuron Morphology Representations for Cell Type Discrimination
Quantitative analysis of neuronal morphologies usually begins with choosing a particular feature representation in order to make individual morphologies amenable to standard statistics tools and machine learning algorithms. Many different feature representations have been suggested in the literature...
Autores principales: | Laturnus, Sophie, Kobak, Dmitry, Berens, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498503/ https://www.ncbi.nlm.nih.gov/pubmed/32367332 http://dx.doi.org/10.1007/s12021-020-09461-z |
Ejemplares similares
-
The art of using t-SNE for single-cell transcriptomics
por: Kobak, Dmitry, et al.
Publicado: (2019) -
Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
por: Lause, Jan, et al.
Publicado: (2021) -
Phenotypic variation of transcriptomic cell types in mouse motor cortex
por: Scala, Federico, et al.
Publicado: (2020) -
Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas
por: Scala, Federico, et al.
Publicado: (2019) -
Author Correction: Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas
por: Scala, Federico, et al.
Publicado: (2019)