Cargando…
Two-stepped majority voting for efficient EEG-based emotion classification
In this paper, a novel approach that is based on two-stepped majority voting is proposed for efficient EEG-based emotion classification. Emotion recognition is important for human–machine interactions. Facial features- and body gestures-based approaches have been generally proposed for emotion recog...
Autores principales: | Ismael, Aras M., Alçin, Ömer F., Abdalla, Karmand Hussein, Şengür, Abdulkadir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498529/ https://www.ncbi.nlm.nih.gov/pubmed/32940803 http://dx.doi.org/10.1186/s40708-020-00111-3 |
Ejemplares similares
-
The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection
por: Ismael, Aras M., et al.
Publicado: (2020) -
Deep learning approaches for COVID-19 detection based on chest X-ray images
por: Ismael, Aras M., et al.
Publicado: (2021) -
Time–frequency texture descriptors of EEG signals for efficient detection of epileptic seizure
por: Şengür, Abdulkadir, et al.
Publicado: (2016) -
Convolutional neural networks based efficient approach for classification of lung diseases
por: Demir, Fatih, et al.
Publicado: (2019) -
Use of Differential Entropy for Automated Emotion Recognition in a Virtual Reality Environment with EEG Signals
por: Uyanık, Hakan, et al.
Publicado: (2022)