Cargando…
Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury
Introduction: Diffuse traumatic axonal injury (TAI) is one of the key mechanisms leading to impaired consciousness after severe traumatic brain injury (TBI). In addition, preferential regional expression of TAI in the brain may also influence clinical outcome. Aim: We addressed the question whether...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498982/ https://www.ncbi.nlm.nih.gov/pubmed/33013616 http://dx.doi.org/10.3389/fneur.2020.00800 |
_version_ | 1783583629629194240 |
---|---|
author | Andreasen, Sara H. Andersen, Kasper W. Conde, Virginia Dyrby, Tim B. Puonti, Oula Kammersgaard, Lars P. Madsen, Camilla G. Madsen, Kristoffer H. Poulsen, Ingrid Siebner, Hartwig R. |
author_facet | Andreasen, Sara H. Andersen, Kasper W. Conde, Virginia Dyrby, Tim B. Puonti, Oula Kammersgaard, Lars P. Madsen, Camilla G. Madsen, Kristoffer H. Poulsen, Ingrid Siebner, Hartwig R. |
author_sort | Andreasen, Sara H. |
collection | PubMed |
description | Introduction: Diffuse traumatic axonal injury (TAI) is one of the key mechanisms leading to impaired consciousness after severe traumatic brain injury (TBI). In addition, preferential regional expression of TAI in the brain may also influence clinical outcome. Aim: We addressed the question whether the regional expression of microstructural changes as revealed by whole-brain diffusion tensor imaging (DTI) in the subacute stage after severe TBI may predict the duration of post-traumatic amnesia (PTA). Method: Fourteen patients underwent whole-brain DTI in the subacute stage after severe TBI. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for five bilateral brain regions: fronto-temporal, parieto-occipital, and midsagittal hemispheric white matter, as well as brainstem and basal ganglia. Region-specific calculation of mean FA and MD only considered voxels that showed no tissue damage, using an exclusive mask with all voxels that belonged to local brain lesions or microbleeds. Mean FA or MD of the five brain regions were entered in separate partial least squares (PLS) regression analyses to identify patterns of regional microstructural changes that account for inter-individual variations in PTA. Results: For FA, PLS analysis revealed two spatial patterns that significantly correlated with individual PTA. The lower the mean FA values in all five brain regions, the longer that PTA lasted. A pattern characterized by lower FA values in the deeper brain regions relative to the FA values in the hemispheric regions also correlated with longer PTA. Similar trends were found for MD, but opposite in sign. The spatial FA changes as revealed by PLS components predicted the duration of PTA. Individual PTA duration, as predicted by a leave-one-out cross-validation analysis, correlated with true PTA values (Spearman r = 0.68, p(permutation) = 0.008). Conclusion: Two coarse spatial patterns of microstructural damage, indexed as reduction in FA, were relevant to recovery of consciousness after TBI. One pattern expressed was consistent with diffuse microstructural damage across the entire brain. A second pattern was indicative of a preferential damage of deep midline brain structures. |
format | Online Article Text |
id | pubmed-7498982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74989822020-10-02 Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury Andreasen, Sara H. Andersen, Kasper W. Conde, Virginia Dyrby, Tim B. Puonti, Oula Kammersgaard, Lars P. Madsen, Camilla G. Madsen, Kristoffer H. Poulsen, Ingrid Siebner, Hartwig R. Front Neurol Neurology Introduction: Diffuse traumatic axonal injury (TAI) is one of the key mechanisms leading to impaired consciousness after severe traumatic brain injury (TBI). In addition, preferential regional expression of TAI in the brain may also influence clinical outcome. Aim: We addressed the question whether the regional expression of microstructural changes as revealed by whole-brain diffusion tensor imaging (DTI) in the subacute stage after severe TBI may predict the duration of post-traumatic amnesia (PTA). Method: Fourteen patients underwent whole-brain DTI in the subacute stage after severe TBI. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for five bilateral brain regions: fronto-temporal, parieto-occipital, and midsagittal hemispheric white matter, as well as brainstem and basal ganglia. Region-specific calculation of mean FA and MD only considered voxels that showed no tissue damage, using an exclusive mask with all voxels that belonged to local brain lesions or microbleeds. Mean FA or MD of the five brain regions were entered in separate partial least squares (PLS) regression analyses to identify patterns of regional microstructural changes that account for inter-individual variations in PTA. Results: For FA, PLS analysis revealed two spatial patterns that significantly correlated with individual PTA. The lower the mean FA values in all five brain regions, the longer that PTA lasted. A pattern characterized by lower FA values in the deeper brain regions relative to the FA values in the hemispheric regions also correlated with longer PTA. Similar trends were found for MD, but opposite in sign. The spatial FA changes as revealed by PLS components predicted the duration of PTA. Individual PTA duration, as predicted by a leave-one-out cross-validation analysis, correlated with true PTA values (Spearman r = 0.68, p(permutation) = 0.008). Conclusion: Two coarse spatial patterns of microstructural damage, indexed as reduction in FA, were relevant to recovery of consciousness after TBI. One pattern expressed was consistent with diffuse microstructural damage across the entire brain. A second pattern was indicative of a preferential damage of deep midline brain structures. Frontiers Media S.A. 2020-09-04 /pmc/articles/PMC7498982/ /pubmed/33013616 http://dx.doi.org/10.3389/fneur.2020.00800 Text en Copyright © 2020 Andreasen, Andersen, Conde, Dyrby, Puonti, Kammersgaard, Madsen, Madsen, Poulsen and Siebner. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Andreasen, Sara H. Andersen, Kasper W. Conde, Virginia Dyrby, Tim B. Puonti, Oula Kammersgaard, Lars P. Madsen, Camilla G. Madsen, Kristoffer H. Poulsen, Ingrid Siebner, Hartwig R. Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury |
title | Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury |
title_full | Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury |
title_fullStr | Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury |
title_full_unstemmed | Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury |
title_short | Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury |
title_sort | two coarse spatial patterns of altered brain microstructure predict post-traumatic amnesia in the subacute stage of severe traumatic brain injury |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498982/ https://www.ncbi.nlm.nih.gov/pubmed/33013616 http://dx.doi.org/10.3389/fneur.2020.00800 |
work_keys_str_mv | AT andreasensarah twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT andersenkasperw twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT condevirginia twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT dyrbytimb twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT puontioula twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT kammersgaardlarsp twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT madsencamillag twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT madsenkristofferh twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT poulseningrid twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury AT siebnerhartwigr twocoarsespatialpatternsofalteredbrainmicrostructurepredictposttraumaticamnesiainthesubacutestageofseveretraumaticbraininjury |