Cargando…

In vivo localization of chronically implanted electrodes and optic fibers in mice

Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only disc...

Descripción completa

Detalles Bibliográficos
Autores principales: Király, Bálint, Balázsfi, Diána, Horváth, Ildikó, Solari, Nicola, Sviatkó, Katalin, Lengyel, Katalin, Birtalan, Eszter, Babos, Magor, Bagaméry, Gergő, Máthé, Domokos, Szigeti, Krisztián, Hangya, Balázs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499215/
https://www.ncbi.nlm.nih.gov/pubmed/32943633
http://dx.doi.org/10.1038/s41467-020-18472-y
_version_ 1783583672594595840
author Király, Bálint
Balázsfi, Diána
Horváth, Ildikó
Solari, Nicola
Sviatkó, Katalin
Lengyel, Katalin
Birtalan, Eszter
Babos, Magor
Bagaméry, Gergő
Máthé, Domokos
Szigeti, Krisztián
Hangya, Balázs
author_facet Király, Bálint
Balázsfi, Diána
Horváth, Ildikó
Solari, Nicola
Sviatkó, Katalin
Lengyel, Katalin
Birtalan, Eszter
Babos, Magor
Bagaméry, Gergő
Máthé, Domokos
Szigeti, Krisztián
Hangya, Balázs
author_sort Király, Bálint
collection PubMed
description Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers.
format Online
Article
Text
id pubmed-7499215
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74992152020-10-01 In vivo localization of chronically implanted electrodes and optic fibers in mice Király, Bálint Balázsfi, Diána Horváth, Ildikó Solari, Nicola Sviatkó, Katalin Lengyel, Katalin Birtalan, Eszter Babos, Magor Bagaméry, Gergő Máthé, Domokos Szigeti, Krisztián Hangya, Balázs Nat Commun Article Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers. Nature Publishing Group UK 2020-09-17 /pmc/articles/PMC7499215/ /pubmed/32943633 http://dx.doi.org/10.1038/s41467-020-18472-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Király, Bálint
Balázsfi, Diána
Horváth, Ildikó
Solari, Nicola
Sviatkó, Katalin
Lengyel, Katalin
Birtalan, Eszter
Babos, Magor
Bagaméry, Gergő
Máthé, Domokos
Szigeti, Krisztián
Hangya, Balázs
In vivo localization of chronically implanted electrodes and optic fibers in mice
title In vivo localization of chronically implanted electrodes and optic fibers in mice
title_full In vivo localization of chronically implanted electrodes and optic fibers in mice
title_fullStr In vivo localization of chronically implanted electrodes and optic fibers in mice
title_full_unstemmed In vivo localization of chronically implanted electrodes and optic fibers in mice
title_short In vivo localization of chronically implanted electrodes and optic fibers in mice
title_sort in vivo localization of chronically implanted electrodes and optic fibers in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499215/
https://www.ncbi.nlm.nih.gov/pubmed/32943633
http://dx.doi.org/10.1038/s41467-020-18472-y
work_keys_str_mv AT kiralybalint invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT balazsfidiana invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT horvathildiko invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT solarinicola invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT sviatkokatalin invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT lengyelkatalin invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT birtalaneszter invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT babosmagor invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT bagamerygergo invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT mathedomokos invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT szigetikrisztian invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice
AT hangyabalazs invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice