Cargando…
In vivo localization of chronically implanted electrodes and optic fibers in mice
Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only disc...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499215/ https://www.ncbi.nlm.nih.gov/pubmed/32943633 http://dx.doi.org/10.1038/s41467-020-18472-y |
_version_ | 1783583672594595840 |
---|---|
author | Király, Bálint Balázsfi, Diána Horváth, Ildikó Solari, Nicola Sviatkó, Katalin Lengyel, Katalin Birtalan, Eszter Babos, Magor Bagaméry, Gergő Máthé, Domokos Szigeti, Krisztián Hangya, Balázs |
author_facet | Király, Bálint Balázsfi, Diána Horváth, Ildikó Solari, Nicola Sviatkó, Katalin Lengyel, Katalin Birtalan, Eszter Babos, Magor Bagaméry, Gergő Máthé, Domokos Szigeti, Krisztián Hangya, Balázs |
author_sort | Király, Bálint |
collection | PubMed |
description | Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers. |
format | Online Article Text |
id | pubmed-7499215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74992152020-10-01 In vivo localization of chronically implanted electrodes and optic fibers in mice Király, Bálint Balázsfi, Diána Horváth, Ildikó Solari, Nicola Sviatkó, Katalin Lengyel, Katalin Birtalan, Eszter Babos, Magor Bagaméry, Gergő Máthé, Domokos Szigeti, Krisztián Hangya, Balázs Nat Commun Article Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers. Nature Publishing Group UK 2020-09-17 /pmc/articles/PMC7499215/ /pubmed/32943633 http://dx.doi.org/10.1038/s41467-020-18472-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Király, Bálint Balázsfi, Diána Horváth, Ildikó Solari, Nicola Sviatkó, Katalin Lengyel, Katalin Birtalan, Eszter Babos, Magor Bagaméry, Gergő Máthé, Domokos Szigeti, Krisztián Hangya, Balázs In vivo localization of chronically implanted electrodes and optic fibers in mice |
title | In vivo localization of chronically implanted electrodes and optic fibers in mice |
title_full | In vivo localization of chronically implanted electrodes and optic fibers in mice |
title_fullStr | In vivo localization of chronically implanted electrodes and optic fibers in mice |
title_full_unstemmed | In vivo localization of chronically implanted electrodes and optic fibers in mice |
title_short | In vivo localization of chronically implanted electrodes and optic fibers in mice |
title_sort | in vivo localization of chronically implanted electrodes and optic fibers in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499215/ https://www.ncbi.nlm.nih.gov/pubmed/32943633 http://dx.doi.org/10.1038/s41467-020-18472-y |
work_keys_str_mv | AT kiralybalint invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT balazsfidiana invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT horvathildiko invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT solarinicola invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT sviatkokatalin invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT lengyelkatalin invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT birtalaneszter invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT babosmagor invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT bagamerygergo invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT mathedomokos invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT szigetikrisztian invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice AT hangyabalazs invivolocalizationofchronicallyimplantedelectrodesandopticfibersinmice |