Cargando…
Evaluating the informativeness of deep learning annotations for human complex diseases
Deep learning models have shown great promise in predicting regulatory effects from DNA sequence, but their informativeness for human complex diseases is not fully understood. Here, we evaluate genome-wide SNP annotations from two previous deep learning models, DeepSEA and Basenji, by applying strat...
Autores principales: | Dey, Kushal K., van de Geijn, Bryce, Kim, Samuel Sungil, Hormozdiari, Farhad, Kelley, David R., Price, Alkes L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499261/ https://www.ncbi.nlm.nih.gov/pubmed/32943643 http://dx.doi.org/10.1038/s41467-020-18515-4 |
Ejemplares similares
-
SNP-to-gene linking strategies reveal contributions of enhancer-related and candidate master-regulator genes to autoimmune disease
por: Dey, Kushal K., et al.
Publicado: (2022) -
Functionally-informed fine-mapping and polygenic localization of complex trait heritability
por: Weissbrod, Omer, et al.
Publicado: (2020) -
Functional disease architectures reveal unique biological role of transposable elements
por: Hormozdiari, Farhad, et al.
Publicado: (2019) -
Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits
por: Hormozdiari, Farhad, et al.
Publicado: (2018) -
Improving the informativeness of Mendelian disease-derived pathogenicity scores for common disease
por: Kim, Samuel S., et al.
Publicado: (2020)