Cargando…
Cancer gene expression profiles associated with clinical outcomes to chemotherapy treatments
BACKGROUND: Machine learning (ML) methods still have limited applicability in personalized oncology due to low numbers of available clinically annotated molecular profiles. This doesn’t allow sufficient training of ML classifiers that could be used for improving molecular diagnostics. METHODS: We re...
Autores principales: | Borisov, Nicolas, Sorokin, Maxim, Tkachev, Victor, Garazha, Andrew, Buzdin, Anton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499993/ https://www.ncbi.nlm.nih.gov/pubmed/32948183 http://dx.doi.org/10.1186/s12920-020-00759-0 |
Ejemplares similares
-
Flexible Data Trimming Improves Performance of Global Machine Learning Methods in Omics-Based Personalized Oncology
por: Tkachev, Victor, et al.
Publicado: (2020) -
Shambhala: a platform-agnostic data harmonizer for gene expression data
por: Borisov, Nicolas, et al.
Publicado: (2019) -
Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins
por: Nikitin, Daniil, et al.
Publicado: (2018) -
FLOating-Window Projective Separator (FloWPS): A Data Trimming Tool for Support Vector Machines (SVM) to Improve Robustness of the Classifier
por: Tkachev, Victor, et al.
Publicado: (2019) -
Machine Learning Applicability for Classification of PAD/VCD Chemotherapy Response Using 53 Multiple Myeloma RNA Sequencing Profiles
por: Borisov, Nicolas, et al.
Publicado: (2021)