Cargando…
MicroRNA-615 functions as a tumor suppressor in osteosarcoma through the suppression of HK2
At present, the regulatory mechanisms of various microRNAs (miRNAs/miRs) have been elucidated in human cancers including osteosarcoma (OS). This study mainly focused on the role of miR-615 in OS, which has not yet been reported. Ninety-two OS tissues and normal samples were used in this study. Human...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500052/ https://www.ncbi.nlm.nih.gov/pubmed/32968448 http://dx.doi.org/10.3892/ol.2020.12089 |
Sumario: | At present, the regulatory mechanisms of various microRNAs (miRNAs/miRs) have been elucidated in human cancers including osteosarcoma (OS). This study mainly focused on the role of miR-615 in OS, which has not yet been reported. Ninety-two OS tissues and normal samples were used in this study. Human osteoblast hFOB1.19 cells and OS cell line HOS were utilized to detect the expression of miR-615. The expression of miR-615 and gene expression were assessed by RT-qPCR and western blot analysis. Transwell, MTT and luciferase reporter assays were used to investigate the regulatory mechanism of miR-615 in OS. The results revealed that miR-615 expression was reduced in OS tissues and cells, and was associated with poor clinical outcomes and prognosis in OS patients. In addition, overexpression of miR-615 restrained cell viability and metastasis in OS. Furthermore, hexokinase 2 (HK2) was confirmed as a direct target of miR-615. Upregulation of HK2 was detected in OS tissues. The upregulation of HK2 weakened the tumor-suppressive effect of miR-615 in OS. Moreover, miR-615 blocked epithelial-mesenchymal transition (EMT) and inactivated the PI3K/AKT pathway in OS. To conclude, miR-615 acts as a tumor suppressor in OS, thus miR-615 can be used as a target for OS treatment. |
---|