Cargando…

Fine-Grained Breast Cancer Classification With Bilinear Convolutional Neural Networks (BCNNs)

Classification of histopathological images of cancer is challenging even for well-trained professionals, due to the fine-grained variability of the disease. Deep Convolutional Neural Networks (CNNs) showed great potential for classification of a number of the highly variable fine-grained objects. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Weihuang, Juhas, Mario, Zhang, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500315/
https://www.ncbi.nlm.nih.gov/pubmed/33101377
http://dx.doi.org/10.3389/fgene.2020.547327
Descripción
Sumario:Classification of histopathological images of cancer is challenging even for well-trained professionals, due to the fine-grained variability of the disease. Deep Convolutional Neural Networks (CNNs) showed great potential for classification of a number of the highly variable fine-grained objects. In this study, we introduce a Bilinear Convolutional Neural Networks (BCNNs) based deep learning method for fine-grained classification of breast cancer histopathological images. We evaluated our model by comparison with several deep learning algorithms for fine-grained classification. We used bilinear pooling to aggregate a large number of orderless features without taking into consideration the disease location. The experimental results on BreaKHis, a publicly available breast cancer dataset, showed that our method is highly accurate with 99.24% and 95.95% accuracy in binary and in fine-grained classification, respectively.