Cargando…
Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions
Carnosine is a naturally occurring histidine-containing dipeptide present at high concentration in mammalian skeletal muscles. Carnosine was shown to affect muscle contraction, prevent the accumulation of oxidative metabolism by-products and act as an intracellular proton buffer maintaining the musc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500635/ https://www.ncbi.nlm.nih.gov/pubmed/32946513 http://dx.doi.org/10.1371/journal.pone.0239496 |
_version_ | 1783583893341863936 |
---|---|
author | Palin, Marie-France Lapointe, Jérôme Gariépy, Claude Beaudry, Danièle Kalbe, Claudia |
author_facet | Palin, Marie-France Lapointe, Jérôme Gariépy, Claude Beaudry, Danièle Kalbe, Claudia |
author_sort | Palin, Marie-France |
collection | PubMed |
description | Carnosine is a naturally occurring histidine-containing dipeptide present at high concentration in mammalian skeletal muscles. Carnosine was shown to affect muscle contraction, prevent the accumulation of oxidative metabolism by-products and act as an intracellular proton buffer maintaining the muscle acid-base balance. The present study was undertaken to gain additional knowledge about the intracellular mechanisms activated by carnosine in porcine myoblast cells under basal and oxidative stress conditions. Satellite cells were isolated from the skeletal muscles of 3 to 4 day-old piglets to study the effect of 0, 10, 25 and 50 mM carnosine pre-treatments in cells that were exposed (0.3 mM H(2)O(2)) or not to an H(2)O(2)-induced oxidative stress. Study results demonstrated that carnosine acts differently in myoblasts under oxidative stress and in basal conditions, the only exception being with the reduction of reactive oxygen species and protein carbonyls observed in both experimental conditions with carnosine pre-treatment. In oxidative stress conditions, carnosine pre-treatment increased the mRNA abundance of the nuclear factor, erythroid 2 like 2 (NEF2L2) transcription factor and several of its downstream genes known to reduce H(2)O(2). Carnosine prevented the H(2)O(2)-mediated activation of p38 MAPK in oxidative stress conditions, whereas it triggered the activation of mTOR under basal conditions. Current results support the protective effect of carnosine against oxidative damage in porcine myoblast cells, an effect that would be mediated through the p38 MAPK intracellular signaling pathway. The activation of the mTOR signaling pathway under basal condition also suggest a role for carnosine in myoblasts proliferation, growth and survival. |
format | Online Article Text |
id | pubmed-7500635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75006352020-09-24 Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions Palin, Marie-France Lapointe, Jérôme Gariépy, Claude Beaudry, Danièle Kalbe, Claudia PLoS One Research Article Carnosine is a naturally occurring histidine-containing dipeptide present at high concentration in mammalian skeletal muscles. Carnosine was shown to affect muscle contraction, prevent the accumulation of oxidative metabolism by-products and act as an intracellular proton buffer maintaining the muscle acid-base balance. The present study was undertaken to gain additional knowledge about the intracellular mechanisms activated by carnosine in porcine myoblast cells under basal and oxidative stress conditions. Satellite cells were isolated from the skeletal muscles of 3 to 4 day-old piglets to study the effect of 0, 10, 25 and 50 mM carnosine pre-treatments in cells that were exposed (0.3 mM H(2)O(2)) or not to an H(2)O(2)-induced oxidative stress. Study results demonstrated that carnosine acts differently in myoblasts under oxidative stress and in basal conditions, the only exception being with the reduction of reactive oxygen species and protein carbonyls observed in both experimental conditions with carnosine pre-treatment. In oxidative stress conditions, carnosine pre-treatment increased the mRNA abundance of the nuclear factor, erythroid 2 like 2 (NEF2L2) transcription factor and several of its downstream genes known to reduce H(2)O(2). Carnosine prevented the H(2)O(2)-mediated activation of p38 MAPK in oxidative stress conditions, whereas it triggered the activation of mTOR under basal conditions. Current results support the protective effect of carnosine against oxidative damage in porcine myoblast cells, an effect that would be mediated through the p38 MAPK intracellular signaling pathway. The activation of the mTOR signaling pathway under basal condition also suggest a role for carnosine in myoblasts proliferation, growth and survival. Public Library of Science 2020-09-18 /pmc/articles/PMC7500635/ /pubmed/32946513 http://dx.doi.org/10.1371/journal.pone.0239496 Text en © 2020 Palin et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Palin, Marie-France Lapointe, Jérôme Gariépy, Claude Beaudry, Danièle Kalbe, Claudia Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions |
title | Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions |
title_full | Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions |
title_fullStr | Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions |
title_full_unstemmed | Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions |
title_short | Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions |
title_sort | characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500635/ https://www.ncbi.nlm.nih.gov/pubmed/32946513 http://dx.doi.org/10.1371/journal.pone.0239496 |
work_keys_str_mv | AT palinmariefrance characterisationofintracellularmolecularmechanismsmodulatedbycarnosineinporcinemyoblastsunderbasalandoxidativestressconditions AT lapointejerome characterisationofintracellularmolecularmechanismsmodulatedbycarnosineinporcinemyoblastsunderbasalandoxidativestressconditions AT gariepyclaude characterisationofintracellularmolecularmechanismsmodulatedbycarnosineinporcinemyoblastsunderbasalandoxidativestressconditions AT beaudrydaniele characterisationofintracellularmolecularmechanismsmodulatedbycarnosineinporcinemyoblastsunderbasalandoxidativestressconditions AT kalbeclaudia characterisationofintracellularmolecularmechanismsmodulatedbycarnosineinporcinemyoblastsunderbasalandoxidativestressconditions |