Cargando…

An assessment of trends in the frequency and duration of Karenia brevis red tide blooms on the South Texas coast (western Gulf of Mexico)

Limited data coverage on harmful algal blooms (HABs) in some regions makes assessment of long-term trends difficult, and also impedes understanding of bloom ecology. Here, observations reported in a local newspaper were combined with cell count and environmental data from resource management agencie...

Descripción completa

Detalles Bibliográficos
Autores principales: Tominack, Sarah A., Coffey, Kara Z., Yoskowitz, David, Sutton, Gail, Wetz, Michael S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500669/
https://www.ncbi.nlm.nih.gov/pubmed/32946494
http://dx.doi.org/10.1371/journal.pone.0239309
Descripción
Sumario:Limited data coverage on harmful algal blooms (HABs) in some regions makes assessment of long-term trends difficult, and also impedes understanding of bloom ecology. Here, observations reported in a local newspaper were combined with cell count and environmental data from resource management agencies to assess trends in Karenia brevis “red tide” frequency and duration in the Nueces Estuary (Texas) and adjacent coastal waters, and to determine relationships with environmental factors. Based on these analyses, the Coastal Bend region of the Texas coast has experienced a significant increase in the frequency of red tide blooms since the mid-1990s. Salinity was positively correlated with red tide occurrence in the Nueces Estuary, and a documented long-term increase in salinity of the Nueces Estuary may be a major factor in the long-term increase in bloom frequency. This suggests that freshwater inflow management efforts in Texas should consider impacts on red tide habitat suitability (i.e., salinity regime) in downstream estuaries. Natural climate variability such as the El Niño-Southern Oscillation, which is strongly related to rainfall and salinity in Central and South Texas, was also an influential predictor of red tide presence/absence. Though no significant change in the duration of blooms was detected, there was a negative correlation between duration and temperature. Specifically, summer-like temperatures were not favorable to K. brevis bloom development. The relationships found here between red tide frequency/duration and environmental drivers present a new avenue of research that will aid in refining monitoring and forecasting efforts for red tides on the Texas coast and elsewhere. Findings also highlight the importance of factors (i.e., salinity, temperature) that are likely to be altered in the future due to both population growth in coastal watersheds and anthropogenic climate change.