Cargando…
USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2
TET2 DNA dioxygenase is frequently mutated in human hematopoietic malignancies and functionally inactivated in many solid tumors through a nonmutational mechanism. We recently found that TET2 mediates the interferon-JAK-STAT pathway to stimulate chemokine expression and tumor infiltration of lymphoc...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500937/ https://www.ncbi.nlm.nih.gov/pubmed/32948596 http://dx.doi.org/10.1126/sciadv.abc9730 |
Sumario: | TET2 DNA dioxygenase is frequently mutated in human hematopoietic malignancies and functionally inactivated in many solid tumors through a nonmutational mechanism. We recently found that TET2 mediates the interferon-JAK-STAT pathway to stimulate chemokine expression and tumor infiltration of lymphocytes (TILs). TET2 is monoubiquitylated at K1299, which promotes its activity. Here, we report that USP15 is a TET2 deubiquitinase and inhibitor. USP15 catalyzes the removal of K1299-linked monoubiquitin and negatively regulates TET2 activity. Gene expression profiling demonstrates that TET2 and USP15 oppositely regulate genes involved in multiple inflammatory pathways, and TET2 is a major target of USP15 function. Deletion of Usp15 in melanoma stimulates chemokine expression and TILs in a TET2-dependent manner, leading to increased response to immunotherapy and extended life span of tumor-bearing mice. These results reveal a previously unknown regulator of TET2 activity and suggest USP15 as a potential therapeutic target for immunotherapy of solid tumors. |
---|