Cargando…
Combining deep learning with 3D stereophotogrammetry for craniosynostosis diagnosis
Craniosynostosis is a condition in which cranial sutures fuse prematurely, causing problems in normal brain and skull growth in infants. To limit the extent of cosmetic and functional problems, swift diagnosis is needed. The goal of this study is to investigate if a deep learning algorithm is capabl...
Autores principales: | de Jong, Guido, Bijlsma, Elmar, Meulstee, Jene, Wennen, Myrte, van Lindert, Erik, Maal, Thomas, Aquarius, René, Delye, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501225/ https://www.ncbi.nlm.nih.gov/pubmed/32948813 http://dx.doi.org/10.1038/s41598-020-72143-y |
Ejemplares similares
-
Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility
por: Hoevenaren, Inge A., et al.
Publicado: (2015) -
Endoscopy-assisted craniosynostosis surgery followed by helmet therapy
por: Delye, H. H. K., et al.
Publicado: (2018) -
Realistic simulator for craniosynostosis endoscopic approach
por: Coelho, Giselle, et al.
Publicado: (2021) -
Validation of Stereophotogrammetry of the Human Torso
por: Lee, Juhun, et al.
Publicado: (2011) -
Cranial shape comparison for automated objective 3D craniosynostosis surgery planning
por: Tolhuisen, Manon L., et al.
Publicado: (2018)