Cargando…

Pentagalloyl glucose from Schinus terebinthifolia inhibits growth of carbapenem-resistant Acinetobacter baumannii

The rise of antibiotic resistance has necessitated a search for new antimicrobials with potent activity against multidrug-resistant gram-negative pathogens, such as carbapenem-resistant Acinetobacter baumannii (CRAB). In this study, a library of botanical extracts generated from plants used to treat...

Descripción completa

Detalles Bibliográficos
Autores principales: Dettweiler, Micah, Marquez, Lewis, Lin, Michelle, Sweeney-Jones, Anne M., Chhetri, Bhuwan Khatri, Zurawski, Daniel V., Kubanek, Julia, Quave, Cassandra L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501240/
https://www.ncbi.nlm.nih.gov/pubmed/32948818
http://dx.doi.org/10.1038/s41598-020-72331-w
Descripción
Sumario:The rise of antibiotic resistance has necessitated a search for new antimicrobials with potent activity against multidrug-resistant gram-negative pathogens, such as carbapenem-resistant Acinetobacter baumannii (CRAB). In this study, a library of botanical extracts generated from plants used to treat infections in traditional medicine was screened for growth inhibition of CRAB. A crude extract of Schinus terebinthifolia leaves exhibited 80% inhibition at 256 µg/mL and underwent bioassay-guided fractionation, leading to the isolation of pentagalloyl glucose (PGG), a bioactive gallotannin. PGG inhibited growth of both CRAB and susceptible A. baumannii (MIC 64–256 µg/mL), and also exhibited activity against Pseudomonas aeruginosa (MIC 16 µg/mL) and Staphylococcus aureus (MIC 64 µg/mL). A mammalian cytotoxicity assay with human keratinocytes (HaCaTs) yielded an IC(50) for PGG of 256 µg/mL. Mechanistic experiments revealed iron chelation as a possible mode of action for PGG’s activity against CRAB. Passaging assays for resistance did not produce any resistant mutants over a period of 21 days. In conclusion, PGG exhibits antimicrobial activity against CRAB, but due to known pharmacological restrictions in delivery, translation as a therapeutic may be limited to topical applications such as wound rinses and dressings.