Cargando…
Instantaneous mental workload assessment using time–frequency analysis and semi-supervised learning
The real-time assessment of mental workload (MWL) is critical for development of intelligent human–machine cooperative systems in various safety–critical applications. Although data-driven machine learning (ML) approach has shown promise in MWL recognition, there is still difficulty in acquiring a s...
Autores principales: | Zhang, Jianhua, Li, Jianrong, Wang, Rubin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501379/ https://www.ncbi.nlm.nih.gov/pubmed/33014177 http://dx.doi.org/10.1007/s11571-020-09589-3 |
Ejemplares similares
-
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Semi-supervised learning /
Publicado: (2010) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Time-Series Laplacian Semi-Supervised Learning for Indoor Localization †
por: Yoo, Jaehyun
Publicado: (2019) -
Semi-supervised learning in cancer diagnostics
por: Eckardt, Jan-Niklas, et al.
Publicado: (2022)