Cargando…
A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality
Although deep learning has recently increased in popularity, it suffers from various problems including high computational complexity, energy greedy computation, and lack of scalability, to mention a few. In this paper, we investigate an alternative brain-inspired method for data analysis that circu...
Autores principales: | Pontes-Filho, Sidney, Lind, Pedro, Yazidi, Anis, Zhang, Jianhua, Hammer, Hugo, Mello, Gustavo B. M., Sandvig, Ioanna, Tufte, Gunnar, Nichele, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501380/ https://www.ncbi.nlm.nih.gov/pubmed/33014179 http://dx.doi.org/10.1007/s11571-020-09600-x |
Ejemplares similares
-
Networks of learning automata: techniques for online stochastic optimization
por: Thathachar, M A L, et al.
Publicado: (2004) -
Robust finite automata in stochastic chemical reaction networks
por: Arredondo, David, et al.
Publicado: (2021) -
Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks
por: Liang, Jinghang, et al.
Publicado: (2012) -
Gene perturbation and intervention in context-sensitive stochastic Boolean networks
por: Zhu, Peican, et al.
Publicado: (2014) -
Towards the Neuroevolution of Low-level artificial general intelligence
por: Pontes-Filho, Sidney, et al.
Publicado: (2022)