Cargando…

Breaking Free from Cobalt Reliance in Lithium-Ion Batteries

The exponential growth in demand for electric vehicles (EVs) necessitates increasing supplies of low-cost and high-performance lithium-ion batteries (LIBs). Naturally, the ramp-up in LIB production raises concerns over raw material availability, where constraints can generate severe price spikes and...

Descripción completa

Detalles Bibliográficos
Autores principales: Gourley, Storm William D., Or, Tyler, Chen, Zhongwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501431/
https://www.ncbi.nlm.nih.gov/pubmed/32947125
http://dx.doi.org/10.1016/j.isci.2020.101505
Descripción
Sumario:The exponential growth in demand for electric vehicles (EVs) necessitates increasing supplies of low-cost and high-performance lithium-ion batteries (LIBs). Naturally, the ramp-up in LIB production raises concerns over raw material availability, where constraints can generate severe price spikes and bring the momentum and optimism of the EV market to a halt. Particularly, the reliance of cobalt in the cathode is concerning owing to its high cost, scarcity, and centralized and volatile supply chain structure. However, compositions suitable for EV applications that demonstrate high energy density and lifetime are all reliant on cobalt to some degree. In this work, we assess the necessity and feasibility of developing and commercializing cobalt-free cathode materials for LIBs. Promising cobalt-free compositions and critical areas of research are highlighted, which provide new insight into the role and contribution of cobalt.