Cargando…
Chinese Clinical Named Entity Recognition in Electronic Medical Records: Development of a Lattice Long Short-Term Memory Model With Contextualized Character Representations
BACKGROUND: Clinical named entity recognition (CNER), whose goal is to automatically identify clinical entities in electronic medical records (EMRs), is an important research direction of clinical text data mining and information extraction. The promotion of CNER can provide support for clinical dec...
Autores principales: | Li, Yongbin, Wang, Xiaohua, Hui, Linhu, Zou, Liping, Li, Hongjin, Xu, Luo, Liu, Weihai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501578/ https://www.ncbi.nlm.nih.gov/pubmed/32885786 http://dx.doi.org/10.2196/19848 |
Ejemplares similares
-
Unsupervised cross-lingual model transfer for named entity recognition with contextualized word representations
por: Yan, Huijiong, et al.
Publicado: (2021) -
Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization
por: Taillé, Bruno, et al.
Publicado: (2020) -
Biomedical named entity recognition using deep neural networks with contextual information
por: Cho, Hyejin, et al.
Publicado: (2019) -
Improving the Named Entity Recognition of Chinese Electronic Medical Records by Combining Domain Dictionary and Rules
por: Chen, Xianglong, et al.
Publicado: (2020) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014)