Cargando…

Expression of a fungal exo-β-1,3-galactanase in Arabidopsis reveals a role of type II arabinogalactans in the regulation of cell shape

Arabinogalactan-proteins (AGPs) are a family of plant extracellular proteoglycans implicated in many physiological events. AGP is decorated with type II arabinogalactans (AGs) consisting of a β-1,3-galactan backbone and β-1,6-galactan side chains, to which other sugars are attached. Based on the fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshimi, Yoshihisa, Hara, Katsuya, Yoshimura, Mami, Tanaka, Nobukazu, Higaki, Takumi, Tsumuraya, Yoichi, Kotake, Toshihisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501824/
https://www.ncbi.nlm.nih.gov/pubmed/32470141
http://dx.doi.org/10.1093/jxb/eraa236
Descripción
Sumario:Arabinogalactan-proteins (AGPs) are a family of plant extracellular proteoglycans implicated in many physiological events. AGP is decorated with type II arabinogalactans (AGs) consisting of a β-1,3-galactan backbone and β-1,6-galactan side chains, to which other sugars are attached. Based on the fact that a type II AG-specific inhibitor, β-Yariv reagent, perturbs growth and development, it has been proposed that type II AGs participate in the regulation of cell shape and tissue organization. However, the mechanisms by which type II AGs participate have not yet been established. Here, we describe a novel system that causes specific degradation of type II AGs in Arabidopsis, by which a gene encoding a fungal exo-β-1,3-galactanase that specifically hydrolyzes β-1,3-galactan backbones of type II AGs is expressed under the control of a dexamethasone-inducible promoter. Dexamethasone treatment increased the galactanase activity, leading to a decrease in Yariv reagent-reactive AGPs in transgenic Arabidopsis. We detected the typical oligosaccharides released from type II AGs by Il3GAL in the soluble fraction, demonstrating that Il3GAL acted on type II AG in the transgenic plants. Additionally, this resulted in severe tissue disorganization in the hypocotyl and cotyledons, suggesting that the degradation of type II AGs affected the regulation of cell shape.