Cargando…

Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil

BACKGROUND: Severe Acute Respiratory Syndrome-coronavirus 2 (SARS-CoV-2) is a new virus with a global pandemic. Yet, no vaccine or efficient treatments are found against the disease. The viral RNA dependent RNA Polymerase (RdRP) is a suitable target for developing antiviral agents. SARS-CoV-2 RdRP w...

Descripción completa

Detalles Bibliográficos
Autor principal: Daghir Janabi, Ali Hassan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Avicenna Research Institute 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502160/
https://www.ncbi.nlm.nih.gov/pubmed/33014317
_version_ 1783584167850672128
author Daghir Janabi, Ali Hassan
author_facet Daghir Janabi, Ali Hassan
author_sort Daghir Janabi, Ali Hassan
collection PubMed
description BACKGROUND: Severe Acute Respiratory Syndrome-coronavirus 2 (SARS-CoV-2) is a new virus with a global pandemic. Yet, no vaccine or efficient treatments are found against the disease. The viral RNA dependent RNA Polymerase (RdRP) is a suitable target for developing antiviral agents. SARS-CoV-2 RdRP was employed to test its binding activity with some drugs. METHODS: Using some docking methods, RdRP was targeted by Milbemycins (MMs), Ivermectin (IMT), Baloxavir Marboxil (BM), and Tadalafil (TF), a phosphodiesterase type 5 inhibitor. RESULTS: MM-A3 5-oxime (MMA35O), MM-A3 (MMA3), MM-A4 5-oxime (MMA45O), IMT, BM, and TF showed the highest binding affinity to RdRp. CONCLUSION: The drugs used in the present computational investigation are effective against the SARS-CoV-2 RdRP with high affinity values especially, milbemycins, ivermectin, and Baloxavir marboxil, which could further be studied in laboratory and clinical trials for saving millions of lives around the world.
format Online
Article
Text
id pubmed-7502160
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Avicenna Research Institute
record_format MEDLINE/PubMed
spelling pubmed-75021602020-10-02 Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil Daghir Janabi, Ali Hassan Avicenna J Med Biotechnol Short Communication BACKGROUND: Severe Acute Respiratory Syndrome-coronavirus 2 (SARS-CoV-2) is a new virus with a global pandemic. Yet, no vaccine or efficient treatments are found against the disease. The viral RNA dependent RNA Polymerase (RdRP) is a suitable target for developing antiviral agents. SARS-CoV-2 RdRP was employed to test its binding activity with some drugs. METHODS: Using some docking methods, RdRP was targeted by Milbemycins (MMs), Ivermectin (IMT), Baloxavir Marboxil (BM), and Tadalafil (TF), a phosphodiesterase type 5 inhibitor. RESULTS: MM-A3 5-oxime (MMA35O), MM-A3 (MMA3), MM-A4 5-oxime (MMA45O), IMT, BM, and TF showed the highest binding affinity to RdRp. CONCLUSION: The drugs used in the present computational investigation are effective against the SARS-CoV-2 RdRP with high affinity values especially, milbemycins, ivermectin, and Baloxavir marboxil, which could further be studied in laboratory and clinical trials for saving millions of lives around the world. Avicenna Research Institute 2020 /pmc/articles/PMC7502160/ /pubmed/33014317 Text en Copyright© 2020 Avicenna Research Institute http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Short Communication
Daghir Janabi, Ali Hassan
Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil
title Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil
title_full Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil
title_fullStr Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil
title_full_unstemmed Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil
title_short Effective Anti-SARS-CoV-2 RNA Dependent RNA Polymerase Drugs Based on Docking Methods: The Case of Milbemycin, Ivermectin, and Baloxavir Marboxil
title_sort effective anti-sars-cov-2 rna dependent rna polymerase drugs based on docking methods: the case of milbemycin, ivermectin, and baloxavir marboxil
topic Short Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502160/
https://www.ncbi.nlm.nih.gov/pubmed/33014317
work_keys_str_mv AT daghirjanabialihassan effectiveantisarscov2rnadependentrnapolymerasedrugsbasedondockingmethodsthecaseofmilbemycinivermectinandbaloxavirmarboxil