Cargando…

Stochastic reaction networks in dynamic compartment populations

Compartmentalization of biochemical processes underlies all biological systems, from the organelle to the tissue scale. Theoretical models to study the interplay between noisy reaction dynamics and compartmentalization are sparse, and typically very challenging to analyze computationally. Recent stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Duso, Lorenzo, Zechner, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502757/
https://www.ncbi.nlm.nih.gov/pubmed/32868438
http://dx.doi.org/10.1073/pnas.2003734117
Descripción
Sumario:Compartmentalization of biochemical processes underlies all biological systems, from the organelle to the tissue scale. Theoretical models to study the interplay between noisy reaction dynamics and compartmentalization are sparse, and typically very challenging to analyze computationally. Recent studies have made progress toward addressing this problem in the context of specific biological systems, but a general and sufficiently effective approach remains lacking. In this work, we propose a mathematical framework based on counting processes that allows us to study dynamic compartment populations with arbitrary interactions and internal biochemistry. We derive an efficient description of the dynamics in terms of differential equations which capture the statistics of the population. We demonstrate the relevance of our approach by analyzing models inspired by different biological processes, including subcellular compartmentalization and tissue homeostasis.