Cargando…
Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia
Propionic Acidemia (PA) is an inborn error of metabolism caused by variants in the PCCA or PCCB genes, leading to mitochondrial accumulation of propionyl-CoA and its by-products. Here, we report a 2 year-old Egyptian boy with PA who was born to consanguineous parents. Biochemical analysis was perfor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502849/ https://www.ncbi.nlm.nih.gov/pubmed/32995289 http://dx.doi.org/10.1016/j.ymgmr.2020.100645 |
_version_ | 1783584276539768832 |
---|---|
author | Ibrahim, Ali Zaki Thirumal Kumar, D. Abunada, Taghreed Younes, Salma George Priya Doss, C. Zaki, Osama K. Zayed, Hatem |
author_facet | Ibrahim, Ali Zaki Thirumal Kumar, D. Abunada, Taghreed Younes, Salma George Priya Doss, C. Zaki, Osama K. Zayed, Hatem |
author_sort | Ibrahim, Ali Zaki |
collection | PubMed |
description | Propionic Acidemia (PA) is an inborn error of metabolism caused by variants in the PCCA or PCCB genes, leading to mitochondrial accumulation of propionyl-CoA and its by-products. Here, we report a 2 year-old Egyptian boy with PA who was born to consanguineous parents. Biochemical analysis was performed using tandem mass spectrometry (MS/MS) on the patient's dried blood spots (DBS) followed by urine examination of amino acids using gas chromatography/mass spectrometry (GC/MS). Molecular genetic analysis was carried out using whole-exome sequencing (WES). The PCCA gene sequencing revealed a novel homozygous missense variant affecting the locus (chr13:100962160) of exon 16 of the PCCA gene, resulting in the substitution of the amino acid arginine with proline at site 476 (p.Arg476Pro). Computational analysis revealed that the novel variant might be pathogenic and attributed to decrease the stability and also has an effect on the biotin carboxylase c-terminal domain of the propionyl carboxylase enzyme. The physicochemical properties analysis using NCBI amino acid explorer study revealed restrictions in the side chain and loss of hydrogen bonds due to the variant. On the structural level, the loss of beta-sheet was observed due to the variant proline, which has further led to the loss of surrounding interactions. This loss of beta-sheet and the surrounding interactions might serve the purpose of the structural stability changes. The current study demonstrates that a combination of whole-exome sequencing (WES) and computational analysis are potent tools for validation of diagnosis and classification of disease-causing variants. |
format | Online Article Text |
id | pubmed-7502849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75028492020-09-28 Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia Ibrahim, Ali Zaki Thirumal Kumar, D. Abunada, Taghreed Younes, Salma George Priya Doss, C. Zaki, Osama K. Zayed, Hatem Mol Genet Metab Rep Research Paper Propionic Acidemia (PA) is an inborn error of metabolism caused by variants in the PCCA or PCCB genes, leading to mitochondrial accumulation of propionyl-CoA and its by-products. Here, we report a 2 year-old Egyptian boy with PA who was born to consanguineous parents. Biochemical analysis was performed using tandem mass spectrometry (MS/MS) on the patient's dried blood spots (DBS) followed by urine examination of amino acids using gas chromatography/mass spectrometry (GC/MS). Molecular genetic analysis was carried out using whole-exome sequencing (WES). The PCCA gene sequencing revealed a novel homozygous missense variant affecting the locus (chr13:100962160) of exon 16 of the PCCA gene, resulting in the substitution of the amino acid arginine with proline at site 476 (p.Arg476Pro). Computational analysis revealed that the novel variant might be pathogenic and attributed to decrease the stability and also has an effect on the biotin carboxylase c-terminal domain of the propionyl carboxylase enzyme. The physicochemical properties analysis using NCBI amino acid explorer study revealed restrictions in the side chain and loss of hydrogen bonds due to the variant. On the structural level, the loss of beta-sheet was observed due to the variant proline, which has further led to the loss of surrounding interactions. This loss of beta-sheet and the surrounding interactions might serve the purpose of the structural stability changes. The current study demonstrates that a combination of whole-exome sequencing (WES) and computational analysis are potent tools for validation of diagnosis and classification of disease-causing variants. Elsevier 2020-09-17 /pmc/articles/PMC7502849/ /pubmed/32995289 http://dx.doi.org/10.1016/j.ymgmr.2020.100645 Text en © 2020 Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Ibrahim, Ali Zaki Thirumal Kumar, D. Abunada, Taghreed Younes, Salma George Priya Doss, C. Zaki, Osama K. Zayed, Hatem Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia |
title | Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia |
title_full | Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia |
title_fullStr | Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia |
title_full_unstemmed | Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia |
title_short | Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia |
title_sort | investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an egyptian patient with propionic acidemia |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502849/ https://www.ncbi.nlm.nih.gov/pubmed/32995289 http://dx.doi.org/10.1016/j.ymgmr.2020.100645 |
work_keys_str_mv | AT ibrahimalizaki investigatingthestructuralimpactsofanovelmissensevariantidentifiedwithwholeexomesequencinginanegyptianpatientwithpropionicacidemia AT thirumalkumard investigatingthestructuralimpactsofanovelmissensevariantidentifiedwithwholeexomesequencinginanegyptianpatientwithpropionicacidemia AT abunadataghreed investigatingthestructuralimpactsofanovelmissensevariantidentifiedwithwholeexomesequencinginanegyptianpatientwithpropionicacidemia AT younessalma investigatingthestructuralimpactsofanovelmissensevariantidentifiedwithwholeexomesequencinginanegyptianpatientwithpropionicacidemia AT georgepriyadossc investigatingthestructuralimpactsofanovelmissensevariantidentifiedwithwholeexomesequencinginanegyptianpatientwithpropionicacidemia AT zakiosamak investigatingthestructuralimpactsofanovelmissensevariantidentifiedwithwholeexomesequencinginanegyptianpatientwithpropionicacidemia AT zayedhatem investigatingthestructuralimpactsofanovelmissensevariantidentifiedwithwholeexomesequencinginanegyptianpatientwithpropionicacidemia |