Cargando…

Poly(l-Lactic Acid)/Pine Wood Bio-Based Composites

Bio-based composites made of poly(l-lactic acid) (PLLA) and pine wood were prepared by melt extrusion. The composites were compatibilized by impregnation of wood with γ-aminopropyltriethoxysilane (APE). Comparison with non-compatibilized formulation revealed that APE is an efficient compatibilizer f...

Descripción completa

Detalles Bibliográficos
Autores principales: Dobrzyńska-Mizera, Monika, Knitter, Monika, Woźniak-Braszak, Aneta, Baranowski, Mikołaj, Sterzyński, Tomasz, Di Lorenzo, Maria Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503300/
https://www.ncbi.nlm.nih.gov/pubmed/32859082
http://dx.doi.org/10.3390/ma13173776
Descripción
Sumario:Bio-based composites made of poly(l-lactic acid) (PLLA) and pine wood were prepared by melt extrusion. The composites were compatibilized by impregnation of wood with γ-aminopropyltriethoxysilane (APE). Comparison with non-compatibilized formulation revealed that APE is an efficient compatibilizer for PLLA/wood composites. Pine wood particles dispersed within PLLA act as nucleating agents able to start the growth of PLLA crystals, resulting in a faster crystallization rate and increased crystal fraction. Moreover, the composites have a slightly lower thermal stability compared to PLLA, proportional to filler content, due to the lower thermal stability of wood. Molecular dynamics was investigated using the solid-state (1)H NMR technique, which revealed restrictions in the mobility of polymer chains upon the addition of wood, as well as enhanced interfacial adhesion between the filler and matrix in the composites compatibilized with APE. The enhanced interfacial adhesion in silane-treated composites was also proved by scanning electron microscopy and resulted in slightly improved deformability and impact resistance of the composites.