Cargando…
The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19)
The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503392/ https://www.ncbi.nlm.nih.gov/pubmed/32899231 http://dx.doi.org/10.3390/ijms21176412 |
Sumario: | The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments. The HMOX1 pathway can inhibit platelet aggregation, and can have anti-thrombotic and anti-inflammatory properties, amongst others, all of which are critical medical conditions observed in COVID-19 patients. Here, we review the potential of modulating the HMOX1-ORF3a nexus to regulate the innate immune response for therapeutic benefits in COVID-19 patients. We also review other potential treatment strategies and suggest novel synthetic and natural compounds that may have the potential for future development in clinic. |
---|