Cargando…
An Early Warning System for Flood Detection Using Critical Slowing Down
The theory of critical slowing down (CSD) suggests an increasing pattern in the time series of CSD indicators near catastrophic events. This theory has been successfully used as a generic indicator of early warning signals in various fields, including climate research. In this paper, we present an a...
Autores principales: | Syed Musa, Syed Mohamad Sadiq, Md Noorani, Mohd Salmi, Abdul Razak, Fatimah, Ismail, Munira, Alias, Mohd Almie, Hussain, Saiful Izzuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503531/ https://www.ncbi.nlm.nih.gov/pubmed/32846870 http://dx.doi.org/10.3390/ijerph17176131 |
Ejemplares similares
-
Using persistent homology as preprocessing of early warning signals for critical transition in flood
por: Syed Musa, Syed Mohamad Sadiq, et al.
Publicado: (2021) -
Persistent Homology-Based Machine Learning Method for Filtering and Classifying Mammographic Microcalcification Images in Early Cancer Detection
por: Malek, Aminah Abdul, et al.
Publicado: (2023) -
No warning for slow transitions
por: van der Bolt, Bregje, et al.
Publicado: (2021) -
Linkage transitions between oil and the stock markets of countries with the highest COVID-19 cases
por: Hussain, Saiful Izzuan, et al.
Publicado: (2022) -
Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis
por: Khairi, Siti Shaliza Mohd, et al.
Publicado: (2021)