Cargando…

Fabrication of Superhydrophobic Ti–6Al–4V Surfaces with Single-Scale Micotextures by using Two-Step Laser Irradiation and Silanization

Laser irradiation is a popular method to produce microtextures on metal surfaces. However, the common laser-produced microtextures were hierarchical (multiscale), which may limit their applicability. In this paper, a method of two-step laser irradiation, combining first-step strong ablation and sequ...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Haidong, Hua, Risheng, Li, Xuan, Wang, Chunju, Ning, Xuezhong, Sun, Lining
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503593/
https://www.ncbi.nlm.nih.gov/pubmed/32872413
http://dx.doi.org/10.3390/ma13173816
Descripción
Sumario:Laser irradiation is a popular method to produce microtextures on metal surfaces. However, the common laser-produced microtextures were hierarchical (multiscale), which may limit their applicability. In this paper, a method of two-step laser irradiation, combining first-step strong ablation and sequentially second-step gentle ablation, was presented to produce micron-rough surface with single-scale microtextures. The effect of laser fluence on the Ti–6Al–4V surface morphology and wettability were investigated in detail. The morphology results revealed that the microtextures produced using this method gradually evolved from multiscale to single-scale meanwhile from microprotrusions to microholes with increasing the second-step laser fluence from 0.0 to 2.4 J/cm(2). The wettability and EDS/XPS results indicated that attributing to the rich TiO(2) content and micron roughness produced by laser irradiation, all the two-step laser-irradiated surfaces exhibited superhydrophilicity. In addition, after silanization, all these superhydrophilic surfaces immediately turned to be superhydrophobic with close water contact angles of 155–162°. However, due to the absence of nanotextures, the water-rolling angle on the superhydrophobic surfaces with single-scale microtextures distinctly larger than those with multiscale ones. Finally, using the two-step laser-irradiation method and assisted with silanization, multifunctional superhydrophobic Ti–6Al–4V surfaces were achieved, including self-cleaning, guiding of the water-rolling direction and anisotropic water-rolling angles (like the rice-leaf), etc.