Cargando…

Identifying the Pressure Points of Acute Cadmium Stress Prior to Acclimation in Arabidopsis thaliana

The toxic metal cadmium (Cd) is a major soil pollutant. Knowledge on the acute Cd-induced stress response is required to better understand the triggers and sequence of events that precede plant acclimation. Therefore, we aimed to identify the pressure points of Cd stress using a short-term exposure...

Descripción completa

Detalles Bibliográficos
Autores principales: Deckers, Jana, Hendrix, Sophie, Prinsen, Els, Vangronsveld, Jaco, Cuypers, Ann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503646/
https://www.ncbi.nlm.nih.gov/pubmed/32872315
http://dx.doi.org/10.3390/ijms21176232
Descripción
Sumario:The toxic metal cadmium (Cd) is a major soil pollutant. Knowledge on the acute Cd-induced stress response is required to better understand the triggers and sequence of events that precede plant acclimation. Therefore, we aimed to identify the pressure points of Cd stress using a short-term exposure set-up ranging from 0 h to 24 h. Acute responses related to glutathione (GSH), hydrogen peroxide (H(2)O(2)), 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene and the oxidative challenge were studied at metabolite and/or transcript level in roots and leaves of Arabidopsis thaliana either exposed or not to 5 µM Cd. Cadmium rapidly induced root GSH depletion, which might serve as an alert response and modulator of H(2)O(2) signalling. Concomitantly, a stimulation of root ACC levels was observed. Leaf responses were delayed and did not involve GSH depletion. After 24 h, a defined oxidative challenge became apparent, which was most pronounced in the leaves and concerted with a strong induction of leaf ACC synthesis. We suggest that root GSH depletion is required for a proper alert response rather than being a merely adverse effect. Furthermore, we propose that roots serve as command centre via a.o. root-derived ACC/ethylene to engage the leaves in a proper stress response.