Cargando…

The Anti-ADAMTS-5 Nanobody(®) M6495 Protects Cartilage Degradation Ex Vivo

Osteoarthritis (OA) is associated with cartilage breakdown, brought about by ADAMTS-5 mediated aggrecan degradation followed by MMP-derived aggrecan and type II collagen degradation. We investigated a novel anti-ADAMTS-5 inhibiting Nanobody(®) (M6495) on cartilage turnover ex vivo. Bovine cartilage...

Descripción completa

Detalles Bibliográficos
Autores principales: Siebuhr, Anne Sofie, Werkmann, Daniela, Bay-Jensen, Anne-C., Thudium, Christian S., Karsdal, Morten Asser, Serruys, Benedikte, Ladel, Christoph, Michaelis, Martin, Lindemann, Sven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503673/
https://www.ncbi.nlm.nih.gov/pubmed/32825512
http://dx.doi.org/10.3390/ijms21175992
Descripción
Sumario:Osteoarthritis (OA) is associated with cartilage breakdown, brought about by ADAMTS-5 mediated aggrecan degradation followed by MMP-derived aggrecan and type II collagen degradation. We investigated a novel anti-ADAMTS-5 inhibiting Nanobody(®) (M6495) on cartilage turnover ex vivo. Bovine cartilage (BEX, n = 4), human osteoarthritic - (HEX, n = 8) and healthy—cartilage (hHEX, n = 1) explants and bovine synovium and cartilage were cultured up to 21 days in medium alone (w/o), with pro-inflammatory cytokines (oncostatin M (10 ng/mL) + TNFα (20 ng/mL) (O + T), IL-1α (10 ng/mL) or oncostatin M (50 ng/mL) + IL-1β (10 ng/mL)) with or without M6495 (1000−0.46 nM). Cartilage turnover was assessed in conditioned medium by GAG (glycosaminoglycan) and biomarkers of ADAMTS-5 driven aggrecan degradation (huARGS and exAGNxI) and type II collagen degradation (C2M) and formation (PRO-C2). HuARGS, exAGNxI and GAG peaked within the first culture week in pro-inflammatory stimulated explants. C2M peaked from day 14 by O + T and day 21 in co-culture experiments. M6495 dose dependently decreased huARGS, exAGNxI and GAG after pro-inflammatory stimulation. In HEX C2M was dose-dependently reduced by M6495. M6495 showed no effect on PRO-C2. M6495 showed cartilage protective effects by dose-dependently inhibiting ADAMTS-5 mediated cartilage degradation and inhibiting overall cartilage deterioration in ex vivo cartilage cultures.